Algorithms and complexity of sandwich problems in graphs (extended abstract)

  • Martin Charles Golumbic
  • Haim Kaplan
  • Ron Shamir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 790)


Given two graphs G1 = (V, E1) and G = (V, E2) such that E1 ⊂- E2, is there a graph G=(V. E) such that E1 ⊂- E ⊂- E2 which belongs to a specified graph family? Such problems generalize recognition problems and arise in various applications. Concentrating mainly on subfamilies of perfect graphs, we give polynomial algorithms for several families and prove the NP-completeness of others.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Apsvall, M. F. Plass, and R. Tarjan. A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing letters, 8(3): 121–123, 1979.Google Scholar
  2. 2.
    H. L. Bodlaender, M. R. Fellows, and T. J. Warnow. Two strikes against perfect phylogeny. In W. Kuich, editor, Proc. 19th 1CALP, pages 273–283, Berlin, 1992. Springer. Lecture Notes in Computer Science, Vol. 623.Google Scholar
  3. 3.
    A. Brandstädt. Special graph classes — a. survey. Technical Report SM-DU-199, Universität Duisburg, 1991.Google Scholar
  4. 4.
    P. Buneman. A characterization of rigid circuit graphs. Discrete Math., 9:205–212, 1974.Google Scholar
  5. 5.
    A. V. Carrano. Establishing the order of human chromosome-specific DNA fragments. In A. D. Wöodhead and B. J. Barnhart, editors, Biotechnology and the Human Genome, pages 37–50. Plenum Press, 1988.Google Scholar
  6. 6.
    V. Chvátal and P. L. Hammer. Aggregation of inequalities for integer programming. Ann. Discrete Math., 1:145–162, 1977.Google Scholar
  7. 7.
    D. G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement reducible graphs. Discrete Applied mathematics, 3:163–174, 1981.Google Scholar
  8. 8.
    T. Gallai. Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hungar., 18:25–66, 1967.Google Scholar
  9. 9.
    M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and co.. San Francisco, 1979.Google Scholar
  10. 10.
    F. Gavril. A recognition algorithm for the intersection graphs of directed paths in directed trees. Discrete Math., 13:237–249, 1975.Google Scholar
  11. 11.
    F. Gavril. A recognition algorithm for the intersection graphs of paths in trees. Discrete Math., 23:211–227, 1978.Google Scholar
  12. 12.
    M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.Google Scholar
  13. 13.
    M. C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. Technical Report 270-92, Computer Science Dept., Tel Aviv University, 1992. submitted.Google Scholar
  14. 14.
    M. C. Golumbic, H. Kaplan, and R. Shamir. On the complexity of DNA physical mapping. Technical Report. 271-93, Computer Science Dept., Tel Aviv University, 1993. To appear in Advances in Applied Mathematics.Google Scholar
  15. 15.
    M. C. Golumbic, D. Rotem, and J. Urrutia. Comparability graphs and intersection graphs. Discrete Math., 43:37–46, 1983.Google Scholar
  16. 16.
    M. C. Golumbic and R. Shamir. Complexity and algorithms for reasoning about time: A graph-theoretic approach. Technical Report 91-54, DIMACS Center, Rutgers University, NJ, 1991. to appear in JACM.Google Scholar
  17. 17.
    P. L. Hammer, T. Ibaraki, and U. N. Peled. Threshold numbers and threshold completions. In P. Hansen, editor, Studies on Graphs and Discrete Programming, pages 125–145. North-Holland, 1981.Google Scholar
  18. 18.
    D. S. Johnson. The NP-completeness column: an ongoing guide. J. of Algorithms, 6:434–451, 1985.Google Scholar
  19. 19.
    S. K. Kannan and T. J. Warnow. Triangulating 3-colored graphs. SIAM J. of Discrete Math., 5(2):249–258, 1992.Google Scholar
  20. 20.
    J. Opatrny. Total ordering problems. SIAM J. Computing, 8(1):111–114, 1979.Google Scholar
  21. 21.
    F. S. Roberts. Discrete Mathematical Models, with Applications to Social Biological and Environmental Problems. Prentice-Hall, Englewood Cliffs, New Jersey, 1976.Google Scholar
  22. 22.
    J. D. Rose. A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In R. C. Reed, editor, Graph Theory and Computing, pages 183–217. Academic Press. N.Y., 1972.Google Scholar
  23. 23.
    D. Rotem and J. Urrutia. Circular permutation graphs. Networks, 11:429–437, 1982.Google Scholar
  24. 24.
    T. J. Schaefer. The complexity of satisfiability problems. In Proc. 10th Annual ACM Symp. on Theory of Computing, pages 216–226, 1978.Google Scholar
  25. 25.
    M. Steel. The complexity of reconstructing trees from qualitative characters and subtrees. J. of Classification, 9:91–116, 1992.Google Scholar
  26. 26.
    A. C. Tucker. Characterizing circular arc graphs. Bull. Amer. Math. Soc., 76:1257–1260, 1970.Google Scholar
  27. 27.
    M. Yannakakis. Computing the minimum fill-in is NP-complet. e. SIAM J. Alg. Disc. Meth., 2, 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Martin Charles Golumbic
    • 1
    • 2
  • Haim Kaplan
    • 3
  • Ron Shamir
    • 3
  1. 1.IBM Israel Scientific CenterHaifaIsrael
  2. 2.Bar-Ilan UniversityRamat GanIsrael
  3. 3.Department of Computer Science, Sackler Faculty of Exact SciencesTel Aviv UniversityTel-AvivIsrael

Personalised recommendations