The piecewise linear classifier DIPOL92

  • Barbara Schulmeister
  • Fritz Wysotzki
Extended Abstracts
Part of the Lecture Notes in Computer Science book series (LNCS, volume 784)


This paper presents a learning algorithm which constructs an optimised piecewise linear classifier for n-class problems.

In the first step of the algorithm initial positions of the discriminating hyperplanes are determined by linear regression for each pair of classes. To optimise these positions depending on the misclassified patterns an error criterion function is defined. This function is minimised by a gradient descent procedure for each hyperplane separately. As an option in the case of non-convex classes, a clustering procedure decomposing the classes into appropriate subclasses can be applied. The classification of patterns is defined on a symbolic level on the basis of the signs of the discriminating hyperplanes.


  1. 1.
    Michie, D., Spiegelhalter, D., Taylor, C. (Eds.): Machine Learning, Neural and Statistical Classification. Results of the Esprit project STATLOG (to appear)Google Scholar
  2. 2.
    Meyer-Brötz, G., and Schürmann, J.: Methoden der automatischen Zeichenerkennung. Akademie-Verlag, Berlin (1970)Google Scholar
  3. 3.
    Unger, S., Wysotzki, F.: Lernfähige Klassifizierungssysteme. Akademie-Verlag, Berlin (1981)Google Scholar
  4. 4.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Barbara Schulmeister
    • 1
  • Fritz Wysotzki
    • 1
  1. 1.Branch Lab for Process OptimisationFraunhofer-Institute for Information and Data ProcessingBerlinGermany

Personalised recommendations