Existence and nonexistence of complete refinement operators

  • Patrick R. J. van der Laag
  • Shan-Hwei Nienhuys-Cheng
Regular Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 784)


Inductive Logic Programming is a subfield of Machine Learning concerned with the induction of logic programs. In Shapiro's Model Inference System — a system that infers theories from examples — the use of downward refinement operators was introduced to walk through an ordered search space of clauses. Downward and upward refinement operators compute specializations and generalizations of clauses respectively. In this article we present the results of our study of completeness and properness of refinement operators for an unrestricted search space of clauses ordered by θ-subsumption. We prove that locally finite downward and upward refinement operators that are both complete and proper for unrestricted search spaces ordered by θ-subsumption do not exist. We also present a complete but improper upward refinement operator. This operator forms a counterpart to Laird's downward refinement operator with the same properties.


  1. 1.
    P. Idestam-Almquist. Generalization under Implication by Using Or-Introduction. In P.B. Brazdil, editor, ECML-93, pages 56–64, Vienna, Austria, April 1993. LNAI-667, Springer-Verlag.Google Scholar
  2. 2.
    P. Idestam-Almquist. Recursive Anti-unification. In S. Muggleton, editor, ILP'93, pages 241–253, Bled, Slovenia, March 1993. Technical Report IJS-DP-6707, J. Stefan Institute.Google Scholar
  3. 3.
    B. Jung. On Inverting Generality Relations. In S. Muggleton, editor, ILP'93, pages 87–101, Bled, Slovenia, March 1993. Technical Report IJS-DP-6707, J. Stefan Institute.Google Scholar
  4. 4.
    P.R.J. van der Laag. Een Meest Algemene Verfijningsoperator voor Gereduceerde Zinnen. In NAIC-92, pages 29–39. Delftse Universitaire Pers, 1992. In Dutch, English version has appeared as Technical Report EUR-CS-92-03, Erasmus Univerity of Rotterdam, Dept. of Computer Science.Google Scholar
  5. 5.
    P.R.J. van der Laag and S.H. Nienhuys-Cheng. A Locally Finite and Complete Upward Refinement Operator for θ-Subsumption. In Benelearn-93. Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Brussels, 1993.Google Scholar
  6. 6.
    P.R.J. van der Laag and S.H. Nienhuys-Cheng. Subsumption and Refinement in Model Inference. In ECML-93, pages 95–114, Vienna, Austria, April 1993. LNAI-667, Springer Verlag.Google Scholar
  7. 7.
    P.D. Laird. Learning from Good and Bad Data. Kluwer Academic Publishers, 1988.Google Scholar
  8. 8.
    S. Lapointe and S. Matwin. Subunification: A Tool for Efficient Induction of Recursive Programs. In ML-92, pages 273–280, Aberdeen, 1992. Morgan Kaufmann.Google Scholar
  9. 9.
    C. Ling and M. Dawes. SIM the Inverse of Shapiro's MIS. Technical report, Department of Computer Science, University of Western Ontario, London, Ontario, Canada., 1990.Google Scholar
  10. 10.
    S.H. Muggleton. Inverting Implication. In Muggleton, S.H., editor, Proceedings of the International Workshop on Inductive Logic Programming, 1992.Google Scholar
  11. 11.
    T. Niblett. A Note on Refinement Operators. In ECML-93, pages 329–335. LNAI-667, Springer Verlag, 1993.Google Scholar
  12. 12.
    S.H. Nienhuys-Cheng, P.R.J. van der Laag, and L.W.N. van der Torre. Constructing Refinement Operators by Decomposing Logical Implication. In P. Torasso, editor, AI * IA'93, pages 178–189, Torino, Italy, October 1993. LNAI-728, Springer-Verlag.Google Scholar
  13. 13.
    G.D. Plotkin. A Note on Inductive Generalization. Machine Intelligence, 5:153–163, 1970.Google Scholar
  14. 14.
    J.C. Reynolds. Transformational Systems and the Algebraic Structure of Atomic Formulas. Machine Intelligence, 5:135–153, 1970.Google Scholar
  15. 15.
    E.Y. Shapiro. Inductive Inference of Theories from Facts. Technical Report 192, Department of Computer Science, Yale University, New Haven. CT., 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Patrick R. J. van der Laag
    • 1
    • 2
  • Shan-Hwei Nienhuys-Cheng
    • 1
  1. 1.Department of Computer ScienceErasmus University of RotterdamDR RotterdamThe Netherlands
  2. 2.Tinbergen InstituteThe Netherlands

Personalised recommendations