Advertisement

A multistrategy learning system and its integration into an interactive floorplanning tool

  • Jürgen Herrmann
  • Reiner Ackermann
  • Jörg Peters
  • Detlef Reipa
Regular Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 784)

Abstract

The presented system COSIMA learns floorplanning rules from structural descriptions incrementally, using a number of cooperating machine learning strategies: Selective inductive generalization generates most specific generalizations using predicate weights to select the best one heuristically. The predicate weights are adjusted statistically. Inductive specialization eliminates overgeneralizations. Constructive induction improves the learning process in several ways. The system is organized as a learning apprentice system. It provides an interactive design tool and can automate single floorplanning steps.

Keywords

learning and problem solving applications of machine learning multistrategy learning 

References

  1. Anderson, J.R. (1986). Knowledge Compilation. In Machine Learning: An Artificial Intelligence Approach Vol II, eds. R. S. Michalski, J. G. Carbonell, T. M. Mitchell, 289–310. Morgan Kaufmann.Google Scholar
  2. Bergadano, F., Giordana, A. & Saitta, L. (1988). Automated Concept Acquisition in Noisy Domains. IEEE Transactions on Pattern Analysis and Machine Intelligence.Google Scholar
  3. Bisson, G. (1992). Conceptual Clustering in a First Order Logic Representation. Proc. 10th ECAI, August 3–7, Vienna.Google Scholar
  4. Dietterich, T.G., & Michalski, R.S. (1983). A Comparative Review of Selected Methods for Learning from Examples. In Machine Learning: An Artificial Intelligence Approach, eds. R. S. Michalski, J. G. Carbonell, T. M. Mitchell, pp 41–81. Palo Alto: Tioga Press.Google Scholar
  5. Elio, R., & Watanabe, L. (1991). An Incremental Deductive Strategy for Controlling Constructive Induction in Learning from Examples. Machine Learning Journal. Vol 7, 7–44, Boston: Kluver Academic Publishers.Google Scholar
  6. Gunsch, G.H. (1991). Opportunistic Constructive Induction: Using Fragments of Domain Knowledge to Guide Construction. PhD Thesis, University of Illinois at Urbana-Champaign.Google Scholar
  7. Haussler, D. (1989). Learning Conjunctive Concepts in Structural Domains. Machine Learning Journal. Vol 4, 7–40, Boston: Kluver Academic Publishers.Google Scholar
  8. Hayes-Roth, F., & McDermott, J. (1977). Knowledge Acquisition from Structural Descriptions. Proc. 5th IJCAI, 356–362.Google Scholar
  9. Herrmann, J., & Beckmann, R. (1992). LEFT — A Learning Tool for Early Floorplanning. Proc. 18th Euromicro Conference, pp 587–594, September 14–17, Paris.Google Scholar
  10. Herrmann, J., & Beckmann, R. (1994). LEFT — A System that Learns Rules about VLSI-Design from Structural Descriptions. (to appear) In Y. Kodratoff (Guest Ed.), Applied Artificial Intelligence, Special Issue on Real-World Applications of Machine Learning Techniques. London: Taylor and Francis Ltd.Google Scholar
  11. Kietz, J.U., & Wrobel, S. (1992). Controlling the Complexity of Learning in Logic Though Syntactic and Task-Oriented Models. Arbeitspapiere der GMD Nr. 503, GMD, Schloß Birlinghoven.Google Scholar
  12. Kodratoff, Y., & Langley, P. (Eds.), (1993). Real-World Applications of Machine Learning. Workshop Notes on the ECML-93 Workshop. Vienna.Google Scholar
  13. Michalski, R.S. (1983). A Theory and Methodology of Inductive Learning. In R.S. Michalski, T.M. Mitchell and J.G. Carbonell (eds.), Machine Learning: An Artificial Intelligence Approach. Palo Alto, CA: Tioga Publishing.Google Scholar
  14. Michalski, R.S. (1993). Inferential Theory of Learning as a Conceptual Basis for Multistrategy Learning. Machine Learning Journal. Vol 11, 111–152, Boston: Kluver Academic Publishers.Google Scholar
  15. Mitchell, T.M., Mahadevan, S., & Steinberg, L. (1985). LEAP — A Learning Apprentice for VLSI Design. Proc. 9th IJCAI, pp 573–580, August 18–23, Los Angeles.Google Scholar
  16. Morik, K. (1992). Applications of Machine Learning. Proceedings of the Sixth European Knowledge Acquisition Workshop (pp 9–13). Springer.Google Scholar
  17. Morik, K. (1993). Balanced Cooperative Modeling. Machine Learning Journal. Vol 11, 217–236, Boston: Kluver Academic Publishers.Google Scholar
  18. S. Muggleton (1987). DUCE, an Oracle Based Approach to Constructive Induction, Proc of the 10th Int. Joint Conference on Artificial Intelligence, IJCAI87Google Scholar
  19. Pazzani, M., & Kibler, D. (1992). The Utility of Knowledge in Inductive Learning. Machine Learning Journal. Vol 9, 57–95, Boston: Kluver Academic Publishers.Google Scholar
  20. Reipa, D. (1993). Konstruktive Induktion für eine strukturelle Beschreibungssprache. Diploma Thesis, University of Dortmund.Google Scholar
  21. Saitta, L., Botta, M., & Neri, F. (1993). Multistrategy Learning and Theory Revision. Machine Learning Journal. Vol 11, 153–172, Boston: Kluver Academic Publishers.Google Scholar
  22. van Someren, M. (Ed.) (1993). Learning and Problem Solving. Workshop Notes on the MLnet Workshop. Blanes.Google Scholar
  23. Wirth, R., & O'Rourke, P.O. (1991). Constraints for Predicate Invention. Proc. of the 8th Int. Machine Learning Conference, Evanston: Morgan Kaufmann.Google Scholar
  24. Watanabe, H. (1987). FLUTE — An Expert Floorplanner for Full-Custom VLSI Design. IEEE Design & Test, pp 32–41. New York: Computer Society of the IEEE.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Jürgen Herrmann
    • 1
  • Reiner Ackermann
    • 1
  • Jörg Peters
    • 1
  • Detlef Reipa
    • 1
  1. 1.Informatik IUniversität DortmundDortmundGermany

Personalised recommendations