Semantic constructions in the specification language Glider

  • S. Clérici
  • R. Jiménez
  • F. Orejas
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 785)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BG 77]
    Burstall, R.M.; Goguen, J.A.: “Putting theories together to make specifications”, Proc. VIJCAI, Cambridge Mass., 1977, pp. 1045–1058.Google Scholar
  2. [BG 80]
    Burstall, R.M.; Goguen, J.A.: “The semantics of Clear, a specification language”, Proc. Copenhagen Winter School on Abstract Software Specification, Springer LNCS 86, pp. 292–332, 1980.Google Scholar
  3. [Bro 88]
    Broy, M.: “An example for the design of distributed systems in a formal setting: the lift problem”. Report MIP-8802, Universität Passau, 1988.Google Scholar
  4. [CO 88]
    Clerici, S.; Orejas, F.: “GSBL: An algebraic specification language based on inheritance” in ECOOP'88 S. Gjessing y K. Nygaard' (eds.), Springer-Verlag Lecture Notes in Computer Science 322 (1988) pp. 78–92.Google Scholar
  5. [CO 91a]
    Clerici, S.; Orejas, F.: “The specification language GSBL” in ‘Recent trends in data type specification’ (H. Ehrig, K. Jantke, F. Orejas, H. Reichel (eds.)) Springer-Verlag Lecture Notes in Computer Science 534, 1991, pp. 31–51.Google Scholar
  6. [CO 91b]
    Clerici, S.; Orejas, F.: First Definition of the Formal Semantics of the ICARUS Process Language (system's funcionalities), Icarus-Forsem Report 009-R, 1991.Google Scholar
  7. [EBCO 91]
    Ehrig, H.; Baldamus, M.; Cornelius, F.; Orejas, F.: “Theory of algebraic module specifications including behavioural semantics, constraint and aspects of generalized morphisms”, Inv. Paper, Proc. 2nd AMAST Conference Iowa City, May 1991, to appear also in Springer LNCS.Google Scholar
  8. [EM 85]
    Ehrig, H.; Mahr, B.: “Fundamentals of algebraic specification 1”, EATCS Monographs on Theor. Comp. Sc., Springer Verlag, 1985.Google Scholar
  9. [ETLZ 82]
    Ehrig, H.; Thatcher, J.W.; Lucas, P.; Zilles, S.N.: “Denotational and initial algebra semantics of the algebraic specification language LOOK”, draft report, IBM Research, 1982.Google Scholar
  10. [EWT 82]
    Ehrig, H.; Wagner, E.G.; Thatcher, J.W.: “Algebraic constraints for specifications and canonical form results”, Institut für Software und Theoretische Informatik, T.U. Berlin Bericht Nr. 82-09, 1982.Google Scholar
  11. [FGJM 85]
    Futatsugi, K.; Goguen, J.A.; Jouannaud, J.-P.; Meseguer, J.: “Principles of OBJ2”, Proc. 12th POPL, Austin 1985.Google Scholar
  12. [Forsem 90]
    Semantic definition of Glider, Icarus-Forsem Report 004-R, 1990.Google Scholar
  13. [Glider1]
    First description of the ICARUS language kernel for the product level, FUN-Namur, INRIA/CRIN-Nancy, PRLB-Brussels, 1989.Google Scholar
  14. [Glider2]
    First version of the ICARUS product and process language for the specification of system functionalities, FUN-Namur, INRIA/CRIN-Nancy, PRLB-Brussels, 1990.Google Scholar
  15. [Glider3]
    Second version of the ICARUS product, process and rationale language for the specification of system functionalities, Part I: the Glider Language, FUN-Namur, INRIA/CRIN-Nancy, PRLB-Brussels, 1990.Google Scholar
  16. [Glider4]
    GLIDER Manual, FUN-Namur, Sema Group-Brussels, 1990.Google Scholar
  17. [GH 86]
    Guttag, J.V.; Horning, J.J.: “Report on the Larch shared language”, Science of Computer Programming 6, 2 (1986) 103–134.Google Scholar
  18. [GJM 85]
    Goguen, J.A.; Jouannaud, J.P.; Meseguer, J.: “Operational semantics of order-sorted algebra”, Proc. ICALP'85, Nafplion, Springer LNCS 194 (1985) 221–231.Google Scholar
  19. [GM 89]
    Goguen, J.A.; Meseguer, J.: “Order-sorted algebra I: Equational deduction for multiple inheritance, overloading, exceptions and partial overloaded operations”, SRI Int., Comp. Sc. Lab. Rep., SRI-CSL-89-10, 1989.Google Scholar
  20. [Gog 91]
    Goguen, J.A.: “Types as Theories”. Topology and Category Theory in Computer Science, Clarendon Press. Oxford, 1991.Google Scholar
  21. [GTWW 77]
    Goguen, J.A.; Thatcher, J.W.; Wagner, E.W.; Wright, J.B.: “Initial Algebra Semantics and Continuous Algebras”. J. ACM 24, 1 (1877), 68–95.Google Scholar
  22. [JOP 91]
    Jiménez, R.; Orejas, F.; Peña, R.: “Some more algebraic constructs for the semantics of Glider”, Icarus-Forsem Report 009-R, 1990.Google Scholar
  23. [KH 90]
    Krieg-Brückner, B.; Hoffmann, B. (eds.) PROgram development by SPECification and TRAnsformation. Part I: Methodology, Part II: Language Family, Part III: System. PROSPECTRA Reports M.1.1.S3-R-55.2,-56.2,-57.2. Universität Bremen (to appear in Springer LNCS).Google Scholar
  24. [Mol 85]
    Möller, B.: “On the Algebraic Specification Of Infinite Objects — Ordered and Continuous Models of Algebraic Types”. Acta Informatica 22, 537–578, 1985.Google Scholar
  25. [Ore 90]
    Orejas, F.: “Some basic algebraic constructs for the semantics of Glider”, Icarus-Forsem Report 003-N, 1990.Google Scholar
  26. [OSC 89]
    Orejas, F.; Sacristan, V.; Clerici, S.: “Development of algebraic specifications with constraints”, Proc. Workshop in Categ. Methods in Comp. Sc. Springer LNCS 393 (1989).Google Scholar
  27. [REI 80]
    Reichel, H.: “Initially restricting algebraic theories”, Proc. MFCS 80, Springer LNCS 88 (1980), pp. 504–514.Google Scholar
  28. [SNGM 89]
    Smolka, G.; Nutt, W.; Goguen, J.; Meseguer, J.: “Order sorted equational computation”, Resolution of equations in algebraic structures, Vol. 2. Academic Press 1989. pp. 299–367.Google Scholar
  29. [ST 89]
    Sannella, D.; Tarlecki, A.: “Toward formal development of ML programs: foundations and methodology”, Proc. TAPSOFT 89 (Barcelona), Springer LNCS 352 (1989) 375–389.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • S. Clérici
    • 1
  • R. Jiménez
    • 1
  • F. Orejas
    • 1
  1. 1.Facultat d'InformàticaUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations