Skip to main content

Area-efficient viterbi decoders for complex rate-k/n convolutional and trellis codes

  • Keynote Paper
  • Conference paper
  • First Online:
Mobile Communications Advanced Systems and Components (IZS 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 783))

Included in the following conference series:

Abstract

Trellis codes and rate-k/n convolutional codes are often used in wired communications, terrestrial radio and satellite radio links for bandwidth efficiency. To further increase data rates and coding gain, higher rate codes with more states can be used. Cost effectiveness of decoders for these complex rate-k/n and trellis codes becomes a major issue. While cost-effective decoder architectures for rate-1/n convolutional codes and high speed decoder architectures are well know, current low-cost decoders for rate-k/n convolutional and trellis codes still resort to suboptimal decoding algorithms. This paper describes a new way to design cost-effective Viterbi decoders for complex rate-k/n convolutional and trellis codes through a co-design of state-processor mapping, topology scaling, scheduling, metric reordering, and VLSI structures of processing elements. New serial-access processing element structures are proposed. The 2q-way interleaving algorithms developed here for metric reordering can be applied to other applications such as interleave coding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Ungerboeck, “Channel Coding with Multilevel/Phase Signals,” IEEE Trans. on Information Theory, vol. IT-28, pp. 55–67, (Jan. 1982).

    Article  Google Scholar 

  2. A.R. Calderbank and N.J.A. Sloane, “New Trellis Codes Based on Lattices and Cosets,” IEEE Trans. on Information Theory, vol. IT-33, pp. 177–195, (Mar. 1987).

    Article  Google Scholar 

  3. D. Divsalar and M.K. Simon, “Trellis Coded Modulation for 4800–9600 bit/s Transmission over a Fading Mobile Satellite Channel,” IEEE Journal on Selected Areas in Communications, vol. SAC-35, pp. 162–174, (Feb, 1987).

    Article  Google Scholar 

  4. A. Rahman and A. K. Elhakeem, “Concatenated Combined Modulation and Coding of Frequency Hopping Multiaccess Systems,” IEEE Journal on Selected Areas in Communications, vol. 8, No.4, pp. 650–662, (May, 1990).

    Google Scholar 

  5. G.D. Forney, Jr., “The Viterbi Algorithm,” Proceedings IEEE, (Mar., 1973).

    Google Scholar 

  6. P.G. Gulak and E. Shwedyk, “VLSI Structures for Viterbi Receivers: Part I-General Theory and Applications and Part II-Encoded MSK Modulation,” IEEE Jour. on Selected Areas in Communications, pp. 142–154, pp. 155–159, (Jan., 1986).

    Google Scholar 

  7. J. Sparso et. al, “An Area-Efficient Topology for VLSI Implementation of Viterbi Decoders and Other Shuffle-Exchange Type Structures,” IEEE J. Solid State Circuits, vol. 26, no. 2, pp. 90–97, (Feb., 1991).

    Google Scholar 

  8. P. Black and T. H.-Y. Meng, “A 140Mb/s 32-State Radix-4 Viterbi Decoder,” IEEE International Solid-State Circuits Conference, pp.70–71, (Feb., 1992).

    Google Scholar 

  9. J.P. Fishburn and R.A. Finkel, “Quotient Networks,” IEEE Transactions on Computers, pp.288–295, (Apr., 1982).

    Google Scholar 

  10. P.G. Gulak and T. Kailath, “VLSI Architectures for The Viterbi Algorithm,” IEEE Jour. on Selected Areas in Communications, (Apr., 1988).

    Google Scholar 

  11. H-D. Lin C.B. Shung and D.G. Messerschmitt, “Folded Viterbi Decoders for Convolutional Codes,” in IEEE VLSI Signal Processing, IV, IEEE Press, (1990).

    Google Scholar 

  12. C.B. Shung, H.-D. Lin, B. Cypher, P.H. Siegel, H.K. Thapar, “Area-Efficient Architectures for the Viterbi Algorithm-Part I: Theory,” IEEE Transactions on Communications, pp.636–644, (April, 1993).

    Google Scholar 

  13. C.M. Rader, “Memory Management in a Viterbi Decoder,” IEEE Transactions on Communications, Vol. COM-29, pp. 1399–1401, (Sep. 1981).

    Google Scholar 

  14. M. Biver, H. Kaeslin and C. Tommasini, “In-Place Updating of Path Metrics in Viterbi Decoders,” IEEE Journal of Solid-State Circuits, pp.1158–1160, (Aug. 1989).

    Google Scholar 

  15. H.-D. Lin and C.B. Shung, “General In-Place Scheduling for the Viterbi Algorithm,” Proceedings ICASSP-91, Toronto, Canada, (May 14–17, 1991).

    Google Scholar 

  16. O. Collins and F. Pollara, “Memory Management in Traceback Viterbi Decoder,” TDA Progress Report 42–99, Jet Propulsion Laboratory, pp.98–104, (Nov. 15, 1989).

    Google Scholar 

  17. R. Cypher and C.B. Shung, “Generalized Trace Back Techniques for Survivor Memory Management in the Viterbi Algorithm,” Proceedings GlobeCom, (Dec. 1990).

    Google Scholar 

  18. K.K. Parhi, “Systematic Synthesis of DSP Data Format Converters Using Life-Time Analysis and Forward-Backward Register Allocation,” IEEE Transactions on CAS — II: Analog and Digital Signal Processing, vol.39, no.7, (July 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christoph G. Günther

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, HD. (1994). Area-efficient viterbi decoders for complex rate-k/n convolutional and trellis codes. In: Günther, C.G. (eds) Mobile Communications Advanced Systems and Components. IZS 1994. Lecture Notes in Computer Science, vol 783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57856-0_48

Download citation

  • DOI: https://doi.org/10.1007/3-540-57856-0_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57856-7

  • Online ISBN: 978-3-540-48359-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics