Advertisement

Algebraic Coding 1993: Algebraic Coding pp 270-277 | Cite as

Bounds on generalized weights

  • Gérard Cohen
  • Llorenç Huguet
  • Gilles Zémor
Bounds for Codes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 781)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Bassalygo, Новые верхние границы для кодов, исправляющих ошибки, Problemy Peredachi Informatsii, 1 (1965), pp. 41–45.Google Scholar
  2. 2.
    H. Chung, The second generalized Hamming weight of double-error correcting binary BCH codes and their dual codes, in AAECC 9, Springer-Verlag, Lec. N. Comp. Sci. 539, 1991.Google Scholar
  3. 3.
    G. Cohen and G. Zémor, Intersecting codes and independent families. Submitted to IEEE Trans on Inf. Theory.Google Scholar
  4. 4.
    G. L. Feng, K. K. Tzeng, and V. K. Wei, On the generalized Hamming weights of several classes of cyclic codes, IEEE Trans. on Inf. Theory, IT-38 (1992), pp. 1125–1130.Google Scholar
  5. 5.
    H. J. Helgert and R. D. Stinaff, Shortened BCH codes, IEEE Trans. on Inf. Theory, IT-19 (1973), pp. 818–820.Google Scholar
  6. 6.
    T. Helleseth, T. Kløve, and Ø. Ytrehus, Generalized Hamming weights of linear codes, IEEE Trans. on Inf. Theory, IT-38 (1992), pp. 1133–1140.Google Scholar
  7. 7.
    L. Huguet, Coding scheme for a wire-tap channel using regular codes, Discrete Math., 56 (1985), pp. 191–201.Google Scholar
  8. 8.
    G. Kabatiansky, On second generalized Hamming weight, in Intern. Workshop on Algebraic and Combinatorial Coding Theory, Bulgaria, 1992, pp. 98–100.Google Scholar
  9. 9.
    T. Kasami, T. Takata, T. Fujiwara, and S. Lin, On the optimum bit order with respect to the state complexity of treillis diagrams for binary linear codes, IEEE Trans. on Inf. Theory, IT-39 (1993), pp. 242–245.Google Scholar
  10. 10.
    T. Kløve, Upperbounds on codes correcting asymmetric errors, IEEE Trans. on Inf. Theory, IT-35 (1989), pp. 797–810.Google Scholar
  11. 11.
    L. H. Ozarow and A. D. Wyner, Wire-tap channel II, AT and T. B.S.T.J., Vol. 63 (1984), pp. 2135–2157.Google Scholar
  12. 12.
    P. Vanroose, Code construction for the noiseless binary switching multiple access channel, IEEE Trans. on Inf. Theory, IT-34 (1988), pp. 1100–1106.Google Scholar
  13. 13.
    V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. on Inf. Theory, IT-37 (1991), pp. 1412–1418.Google Scholar
  14. 14.
    V. A. Zinoviev and S. N. Litsyn, Shortening of codes, Problemy Peredachi Informatsii, 20 (1982), pp. 3–11.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Gérard Cohen
    • 1
  • Llorenç Huguet
    • 2
  • Gilles Zémor
    • 1
  1. 1.ENSTParis 13France
  2. 2.UIBPalmaSpain

Personalised recommendations