Parallel pruning decomposition (PDS) and biconnected components of graphs

  • Eliezer Dekel
  • Jie Hu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 778)


We introduce pruning decomposition, a new method of graph decom position which is very useful in developing a parallel algorithm for graph problems on EREW P-RAM. We present parallel algorithms that achieve the decomposition and an parallel algorithm for finding biconnected components of graphs based on the pruning decomposition. The complexity for both algorithms on EREW P-RAM is dominated by the spanning tree construction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ADKP]
    K. Abrahamson, N. Dadoun, D. Kirkpatrick, and T. Prsytycka, ”A simple Parallel Tree Construction Algorithm,” Journal of Algorithms, 10, pp.287–302, 1989.Google Scholar
  2. [CL]
    K. W. Chong and T. W. Lam, ”Finding Connected Components in O(lognloglogn) Time on the EREW PRAM,” SODA, 1993.Google Scholar
  3. [CV]
    R. Cole and U. Vishkin, ”Optimal Parallel Algorithms for Expression Tree Evaluation and List Ranking,” AWOC pp.91–100, 1988.Google Scholar
  4. [DH]
    E. Dekel and J. Hu, ”A Parallel Algorithm for Finding Minimum Cutsets in Reduceble graphs,” Journal of Parallel and Distributed Processing, to appear.Google Scholar
  5. [NDP]
    S. Ntafos, E. Dekel and S. Peng, ”Compression Trees and Their Applications,” Proc. ICPP, pp.132–139, 1987.Google Scholar
  6. [H]
    J. Hu, ”Parallel Algorithms for Distributed Systems and Software Engineering,” Ph. D. Dissertation, University of Texas at Dallas, 1992.Google Scholar
  7. [K]
    D. Knuth, ”The Art of Computer Programming. Vol. 1. Fundamental Algorithms,” Addison-Wesley, Reading, MA, 1968.Google Scholar
  8. [KR]
    R. M. Karp and V. Ramachandran, ”A Survey of Parallel Algorithms for Shared-Memory Machines,” Handbook of Theoretical Computer Science, Cambridge, MIT Press, 1990.Google Scholar
  9. [MSV]
    Y. Maon, B. Schieber and U. Vishkin, ”Parallel Ear Decomposition Search and st-Numbering in Graphs,” Theo. Com. Sci., Vol.47, pp.277–298, 1986.Google Scholar
  10. [NM]
    D. Nath and S.N. Maheshwari, ”Parallel Algorithms for the Connected Components and Minimal Spanning Tree Problems,” Inf. Proc. Lett., Vol 14, No.l,pp.7–11, 1982.Google Scholar
  11. [TC]
    Y. H. Tsin and F. Y. Chin, ” Efficient Parallel Algorithms for a Class of Graph Theoretic Problems,” SIAM J. Comput. Vol.13, No.3, pp.580–599, 1984.Google Scholar
  12. [TV]
    R. E. Tarjan and U. Vishkin, ”An Efficient Parallel Biconnectivity Algorithm,” SIAM J.Comput., Vol.14, No.4, 862–874, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Eliezer Dekel
    • 1
  • Jie Hu
    • 2
  1. 1.Science & TechnologyIBM IsraelHaifaIsrael
  2. 2.Computer Science ProgramUniversity of Texas at DallasRichardson

Personalised recommendations