Lower bounds for merging on the hypercube

  • Christine Rüb
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 778)


We show lower bounds for the problems of merging two sorted lists of equal length and sorting by repeatedly merging pairs of sorted sequences on the hypercube. These lower bounds hold on the average for any ordering of the processors of the hypercube.

Key Words

Hypercube Merging Sorting Lower bounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AH88]
    A. Aggarwal, M.-D. A. Huang, Network complexity of sorting and graph problems and simulating CRCW PRAMs by interconnection networks, AWOC, LNCS 319, pp. 339–350, 1988Google Scholar
  2. [BN89]
    G. Bilardi, A. Nicolau, Adaptive bitonic sorting: An optimal parallel algorithm for shared-memory machines, SIAM J. Comput. 18, pp. 216–228, 1989.Google Scholar
  3. [C88]
    R. Cole, Parallel merge sort, SIAM J. Comput. 17, 770–785, 1988.Google Scholar
  4. [CyP90]
    R. Cypher, G. Plaxton, Deterministic sorting in nearly logarithmic time on the hypercube and related computers, 20th STOC, pp. 193–203, 1990Google Scholar
  5. [CyS92]
    R. Cypher, J.L.C. Sanz, Cubesort: A parallel algorithm for sorting N data items with S-sorters, J. of Algorithms 13, pp. 211–234, 1992Google Scholar
  6. [HR89]
    T. Hagerup, Ch. Rüb, Optimal merging and sorting on the EREW PRAM, Information Processing Letters 33, pp. 181–185, 1989.Google Scholar
  7. [K83]
    C.P. Kruskal, Searching, merging and sorting in parallel computation, IEEE Transactions on Computers, Vol. C-32, 942–946, 1983.Google Scholar
  8. [L92]
    F.T. Leighton, Introduction to parallel algorithms and architectures: Arrays, trees, hypercubes, Morgan Kaufmann Publishers, San Mate, California, 1992Google Scholar
  9. [LP90]
    T. Leighton, C.G. Plaxton, A (fairly) simple circuit that (usually) sorts, 31st FOCS, Vol. I, pp. 264–274, 1990Google Scholar
  10. [WS78]
    F.J. MacWilliams, N.J. Sloane, The Theory of Error Correcting Codes, North-Holland Mathematical Library,Vol. 16, North-Holland, Amsterdam-New York-Oxford, 1978Google Scholar
  11. [MPT92]
    P.B. Miltersen, M. Paterson, J. Tarui, The asymptotic complexity of merging networks, 33rd FOCS, pp. 236–246, 1992Google Scholar
  12. [P89]
    C.G. Plaxton, Load balancing, selection and sorting on the hypercube, SPAA, pp. 64–73, 1989Google Scholar
  13. [P92]
    C.G. Plaxton, A hypercubic sorting network with nearly logarithmic depth, 24th STOC, pp. 405–416, 1992Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Christine Rüb
    • 1
  1. 1.Max-Planck Institut für InformatikSaarbrückenGermany

Personalised recommendations