Path-controlled graph grammars for multiresolution image processing and analysis

  • Kunio Aizawa
  • Akira Nakamura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 776)


In this paper, we define graph compression rules for the graphs representing two-dimensional rectangular grids with black and white pixels by making use of the PCE way of embedding. The compression rules rewrite four nodes having same label and forming a square into a node with the label. It also inserts and deletes nodes with special labels to preserve the neighborhood relations in the original image. Then we introduce an image compression algorithm using the concept of our graph compression rules. We show that the time complexity of our algorithm is O(Nlog2N), where N is the number of the black nodes of input graph, which is same as the case of the best quadtree representation.


graph grammars path-controlled embedding quadtrees normalized quadtrees region representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ehrig, H., M. Nagl and G. Rozenberg (ed.): Graph-Grammars and Their Application to Computer Science, Lecture Notes in Computer Science, 153, Springer-Verlag, Berlin, 1983.Google Scholar
  2. [2]
    Ehrig, H., M. Nagl, G. Rozenberg and A. Rosenfeld (ed.): Graph-Grammars and Their Application to Computer Science, Lecture Notes in Computer Science, 291, Springer-Verlag, Berlin, 1987.Google Scholar
  3. [3]
    Ehrig, H., H.-J. Kreowski and G. Rozenberg (ed.): Graph Grammars and Their Application to Computer Science, Lecture Notes in Computer Science, 532, Springer-Verlag, 1991.Google Scholar
  4. [4]
    Aizawa, K. and A. Nakamura: Graph grammars with path controlled embedding, Theoretical Computer Science, 88, pp. 151–170, 1991.CrossRefGoogle Scholar
  5. [5]
    Nagl, M.: Eine praezisierung des Pfaltz/Rosenfeldschen produktionsbegriffs bei mehrdimensionalen grammatiken, Arbeitsber. d. Inst. f. Math. Masch. u. Datenver, 6, 3, pp. 56–71, Universität Erlangen-Nümberg, 1973.Google Scholar
  6. [6]
    Nagl, M.: Formal sprachen von marikierten graphen, Arbeitsber. d. Inst. f. Math. Masch. u. Datenver., 7, 4, Universität Erlangen-Nürnberg, 1974.Google Scholar
  7. [7]
    Nagl, M.: Graph-Grammatiken: Theorie Implementierung Anwendeungen, Vieweg, 1979.Google Scholar
  8. [8]
    Samet, H.: A tutorial on quadtree research, in A. Rosenfeld (ed.), Multiresolution Image Processing and Analysis, Springer-Verlag, Berlin, pp. 1984.Google Scholar
  9. [9]
    Samet, H.: The Design and Analysis of Spatial Data Structures, Addison Wesley, New York, 1990.Google Scholar
  10. [10]
    Saudi, A.: Parallel recognition of multidimensional images using regular tree grammars, Lecture Notes in Computer Science, 654, pp. 231–239, 1992.Google Scholar
  11. [11]
    Shi, Q. Y. and K. S. Fu: Parsing and translation of attributed expansive graph languages for scene analysis, IEEE Transaction on Pattern Analysis and Machine Intelligence, PAMI-5, pp. 472–485, 1983.Google Scholar
  12. [12]
    Aizawa, K. and A. Nakamura: Pathe-controlled graph grammars for syntactic pattern recognition, Lecture Notes in Conputer Science, 654, pp. 37–53, 1992.Google Scholar
  13. [13]
    Mylopoulos, J. P. and T. Pavlidis: On the topological properties of quantized spaces, Journal of the Association for Computing Machinery, 18, pp. 239–254, 1971.Google Scholar
  14. [14]
    Gargantini, I.: An effective way to represent quadtrees, Cmmunications of the ACM, 25, pp. 905–910, 1982.Google Scholar
  15. [15]
    Hunter, G. M. and K. Steiglitz: Operations on images using quad trees, PAMI-1, pp. 145–153, 1979.Google Scholar
  16. [16]
    Li, M., W. I. Grosky and R. Jain: Normalized quadtrees with respect to translations, Computer Graphics and Image Processing, 20, pp. 72–81, 1982.CrossRefGoogle Scholar
  17. [17]
    Jones, L. and S. S. Iyengar: Representation of regions as a forest of quadtrees, Proc. of Pattern Recognition and Image Processing Conference, Dallas, pp. 57–59, 1981Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Kunio Aizawa
    • 1
  • Akira Nakamura
    • 2
  1. 1.Department of Applied MathematicsHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Department of Computer ScienceMeiji UniversityKanagawaJapan

Personalised recommendations