On vertex ranking for permutation and other graphs

  • J. S. Deogun
  • T. Kloks
  • D. Kratsch
  • H. Müller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 775)


In this paper we show that an optimal vertex ranking of a permutation graph can be computed in time O(n6), where n is the number of vertices. The demonstrated minimal separator approach can also be used for designing polynomial time algorithms computing an optimal vertex ranking on the following classes of well-structured graphs: circular permutation graphs, interval graphs, circular arc graphs, trapezoid graphs and cocomparability graphs of bounded dimension.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Aspvall and P. Heggernes, Finding minimum height elimination trees for interval graphs in polynomial time, Technical Report No 80, Department of Informatics, University of Bergen, Norway, 1993.Google Scholar
  2. 2.
    H. Bodlaender, J.S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller and Z. Tuza, Rankings of graphs, in preparation.Google Scholar
  3. 3.
    H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson and T. Kloks, Approximating treewidth, pathwidth and minimum elimination tree height, Proc. 17th International Workshop on Graph-Theoretic Concepts in Computer Science WG'91, Springer-Verlag, Lecture Notes in Computer Science 570, 1992, pp. 1–12.Google Scholar
  4. 4.
    H. Bodlaender, T. Kloks and D. Kratsch, Treewidth and pathwidth of permutation graphs, Proceedings of the 20th International Colloquium on Automata, Languages and Programming, Springer-Verlag, Lecture Notes in Computer Science 700, 1993, pp. 114–125.Google Scholar
  5. 5.
    A. Brandstädt and D. Kratsch, On domination problems for permutation and other graphs, Theoretical Computer Science 54 (1987), 181–198.Google Scholar
  6. 6.
    A. Brandstädt, Special graph classes — a survey, Schriftenreihe des Fachbereichs Mathematik, SM-DU-199, Universität Duisburg Gesamthochschule, 1991.Google Scholar
  7. 7.
    J.S. Deogun and Y. Peng, Edge ranking of trees, Congressius Numerantium 79 (1990), 19–28.Google Scholar
  8. 8.
    P. Duchet, Classical perfect graphs, in: Topics on Perfect Graphs, C. Berge and V. Chvátal, (eds.), Annals of Discrete Mathematics 21, 1984, pp. 67–96.Google Scholar
  9. 9.
    I.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Transactions on Mathematical Software 9 (1983), 302–325.Google Scholar
  10. 10.
    M. Farber and M. Keil, Domination in permutation graphs, Journal of Algorithms 6 (1985), 309–321.Google Scholar
  11. 11.
    T. Gallai, Transitiv orientierbare Graphen, Acta Mathematica Scientiarum Hungaricae 18 (1967), 25–66.Google Scholar
  12. 12.
    M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.Google Scholar
  13. 13.
    A.V. Iyer, H.D. Ratliff and G. Vijayan, Parallel assembly of modular products-an analysis, Technical Report 88-06, Georgia Institute of Technology, 1988.Google Scholar
  14. 14.
    A.V. Iyer, H.D. Ratliff and G. Vijayan, On edge ranking problems of trees and graphs, Discrete Applied Mathematics 30 (1991), 43–52.Google Scholar
  15. 15.
    M. Katchalski, W. McCuaig and S. Seager, Ordered colourings, Manuscript, University of Waterloo, 1988.Google Scholar
  16. 16.
    T. Kloks, Treewidth, Ph.D. Thesis, Utrecht University, The Netherlands, 1993.Google Scholar
  17. 17.
    C.E. Leiserson, Area efficient graph layouts for VLSI, Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science, 1980, pp. 270–281.Google Scholar
  18. 18.
    J.W.H. Liu, The role of elimination trees in sparse factorization, SIAM Journal of Matrix Analysis and Applications 11 (1990), 134–172.Google Scholar
  19. 19.
    J. Nevins and D. Whitney, (eds.), Concurrent Design of Products and Processes, McGraw-Hill, 1989.Google Scholar
  20. 20.
    A.A. Schäffer, Optimal node ranking of trees in linear time, Information Processing Letters 33 (1989/1990), 91–96.Google Scholar
  21. 21.
    P. Scheffler, Node ranking and Searching on Graphs (Abstract), in: U. Faigle and C. Hoede, (eds.), 3rd Twente Workshop on Graphs and Combinatorial Optimisation, Memorandum No.1132, Faculty of Applied Mathematics, University of Twente, The Netherlands, 1993.Google Scholar
  22. 22.
    A. Sen, H. Deng and S. Guha, On a graph partition problem with application to VLSI layout, Information Processing Letters 43 (1992), 87–94.Google Scholar
  23. 23.
    J. Spinrad, On comparability and permutation graphs, SIAM Journal on Computing 14 (1985), 658–670.Google Scholar
  24. 24.
    P. de la Torre, R. Greenlaw and A. A. Schäffer, Optimal ranking of trees in polynomial time, Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, Texas, 1993, pp. 138–144.Google Scholar
  25. 25.
    M. Yannakakis, The complexity of the partial order dimension problem, SIAM Journal on Algebraic and Discrete Methods 3 (1982), 351–358.Google Scholar
  26. 26.
    M.-S. Yu, L.Y. Tseng and S.-J. Chang, Sequential and Parallel algorithms for the maximum-weight independent set problem on permutation graphs, Information processing Letters 46 (1993), 7–11.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • J. S. Deogun
    • 1
  • T. Kloks
    • 2
  • D. Kratsch
    • 3
  • H. Müller
    • 3
  1. 1.Department of Computer Science and EngineeringUniversity of Nebraska - LincolnLincolnUSA
  2. 2.Department of Mathematics and Computing ScienceEindhoven University of TechnologyMB EindhovenThe Netherlands
  3. 3.Fakultät für Mathematik und InformatikFriedrich-Schiller-UniversitätJenaGermany

Personalised recommendations