Q-grammars: Results, implementation

  • Maylis Delest
  • Jean-Philippe Dubernard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 775)


This paper deals with an extension of the Schützenberger's methodology in which algebraic grammars are used in order to enumerate combinatorial objects. The extension allows us to make computation with q-series. We present here some results and a computer algebra system QGRAM for the resolution of such equations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.E. ANDREWS, q-series: their development and applications in analysis, number theory, combinatorics, physics and computer algebra, AMS library of congress, Cataloging in publication data (1986).Google Scholar
  2. 2.
    F. BERGERON, G. CARTIER, DARWIN: Computer Algebra and Enumerative combinatorics, Proc. STACS 88, Eds. R. Cori et M. Wirsing, Springer Lectures Notes in Computer Science, 294 (1988), 393–394.Google Scholar
  3. 3.
    M. BOUSQUET-MELOU, q-énumération de polyominos convexes, Thèse de l'Université de Bordeaux 1, (1991).Google Scholar
  4. 4.
    M. DELEST, J.M. FEDOU, Attribute grammars are useful for combinatorics, Theor. Comp. Sci. 98, (1992) 65–76.Google Scholar
  5. 5.
    M. DELEST, J.M. FEDOU, Enumeration of skew Ferrers diagrams, Discrete Maths (to appear).Google Scholar
  6. 6.
    J.P. DUBERNARD, q-grammaires et polyominos parrallélogrammes, Thèse Université Bordeaux I, 1993.Google Scholar
  7. 7.
    F. ENGELFRIED, G. FILE, Formal power of attribute grammars, Acta Informatica 16 (1981) 275–302.Google Scholar
  8. 8.
    K.O. GEDDES, G.H. GONNET, B.W. CHAR, Maple, User's Manual, Research report CS-83-41, University of Waterloo, 1983.Google Scholar
  9. 9.
    D. PERRIN, Words of partially commutative alphabet, Eds. A. Apostolico, Z. Galil, Combinatorial algorithm on words, NATO ASI-series, F12 (1985), 329–340.Google Scholar
  10. 10.
    M.P. SCHUTZENBERGER, Certain elementary families of automata, in Proc. Symp. on Mathematical Theory of Automata, Polytechnic Institute of Brooklyn, 1962, 139–153.Google Scholar
  11. 11.
    SYMBOLICS INC., Macsyma reference manual, version 10, 3rd edition, 1984.Google Scholar
  12. 12.
    X. VIENNOT, A survey of polyominoes enumeration, Proceedings of FPSAC92, Montréal, Eds. P. Leroux, C. Reutenauer (1992), 399–420.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Maylis Delest
    • 1
  • Jean-Philippe Dubernard
    • 2
  1. 1.LaBRIUniversité Bordeaux ITalence cedexFrance
  2. 2.LIUPUniversité de PoitiersPoitiers cedexFrance

Personalised recommendations