An algebraic transformation of the minimum automaton identification problem

  • Ireneusz Sieiocki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 763)


The paper proposes a problem transformation method for solving the minimum automaton identification problem. An algebraic characterization of a set of all simplest hypotheses explaining a given set of input-experiments is performed. It is shown that the minimum identification problem is polynomially transformable into a problem of determining a simplest congruence of the so-called basic hypothesis. It is proved that the method produces a weakly exclusive set of simplest hypotheses.


finite automaton identification simplest hypothesis congruence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Angluin D., Smith C.H., ”Inductive inference: Theory and Methods”. Computing Surveys, 15, pp. 237–269, 1983.Google Scholar
  2. [2]
    Angluin D., ”Learning regular sets from queries and counterexamples”. Information and Computation, 75, pp. 87–106, 1987.Google Scholar
  3. [3]
    Angluin D., ”On the complexity of minimum inference of regular sets”. Information and Control, 39, pp. 337–350, 1978.Google Scholar
  4. [4]
    Biermann A.W., ”Fundamental mechanisms in machine learning and inductive inference”. Lecture Notes in Computer Science, 322, pp. 133–171, 1985.Google Scholar
  5. [5]
    Gerardy R., ”New methods for the identification of finite state systems”. Intern. J. General Systems, 15, pp. 97–112, 1989.Google Scholar
  6. [6]
    Gill A., Introduction to the Theory of Finite-State Machines, McGraw-Hill, New York, 1962.Google Scholar
  7. [7]
    Gold E.M., ”Complexity of automaton identification from given data”. Information and Control, 37, pp. 302–320, 1978.Google Scholar
  8. [8]
    Kalman R.E., Falb P.I. and Arbib M.A., Topics in Mathematical System Theory, McGraw-Hill, New York, 1969Google Scholar
  9. [9]
    Kohavi Z., Switching and Finite Automata Theory, McGraw-Hill, New York, 1969.Google Scholar
  10. [10]
    Lunea P., Richetin M., Cayla C., ”Sequential learning of automata from input-ouput behaviour”. Robotica, 1, pp. 151–159, 1984.Google Scholar
  11. [11]
    Miclet L., ”Regular inference with a tail-clustering method”. IEEE Trans. Syst. Man. Cybern., 10, pp. 737–743, 1980.Google Scholar
  12. [12]
    Pichler F., Schwärtzel H., CAST: Methods in Modelling, Springer-Verlag, Berlin, 1992Google Scholar
  13. [13]
    Pao T.W., Carr III J.W., ”A solution of the syntactical induction-inference problem for regular languages”. Computer Languages, 3, pp. 53–64, 1978.Google Scholar
  14. [14]
    Reusch B., Merznich W., ”Minimal coverings for incompletely specified sequential machines”. Acta Informatica, 22, pp. 663–678, 1986.Google Scholar
  15. [15]
    Richetin M., Naranjo M., ” Inference of automata by dialectic learning”. Robotica, 3, pp. 159–163, 1985.Google Scholar
  16. [16]
    Rivest R.L., Schapire R.E., ”Inference of finite automata using homing sequences”. Proc. of ACM Symposium on Theory of Computing, Seattle, Washington, May, 1989, pp. 1–10.Google Scholar
  17. [17]
    Sierocki I., ”A description of a set of hypotheses for system identification problem”. Intern. J. General Systems, 15, pp. 301–319, 1989.Google Scholar
  18. [18]
    Sierocki I., ”A transformation of the problems of minimal satisfaction of constraints”. Lecture Notes in Computer Science, 585, pp. 218–224, 1992.Google Scholar
  19. [19]
    Sierocki I., ”A problem transformation and decomposition method for solving the minimum automaton identification problem”, submitted for publication Google Scholar
  20. [20]
    Veelenturf L.P.Y., ”Inference of sequential machines from sample computations”. IEEE Trans.Comput., 27, pp. 167–170, 1978.Google Scholar
  21. [21]
    Korf R.E., ”Macro-operators: A weak method of learning”, Artificial Intellignce, 26, pp.35–77, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Ireneusz Sieiocki
    • 1
  1. 1.Institute of Technical CyberneticsTechnical University of WrocławWrocławPoland

Personalised recommendations