Computer aided nonlinear system design based on algebraic system representation and on nonlinear bundle graphs

  • H. J. Sommer
  • H. Hahn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 763)


A Bundle Graph representation of nonlinear systems is defined and is used to solve problems in control theory with algorithmic methods.

Key Words

Nonlinear systems Bundle graphs Decoupling Stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L.Berg, Allgemeine Operatorenrechnung, Überblicke Mathem. 6, BI 1973, 7–49.Google Scholar
  2. [2]
    J.Birk,M.Zeitz, Nonlinear Control System Design IFAC Symp., Capri, 1989.Google Scholar
  3. [3]
    J.Birk,M.Zeitz, Computer-Aided Analysis of Nonlinear Observation Problems, Proceedings of the NOLCOS 92, Bordeaux 251–256.Google Scholar
  4. [4]
    E.Delaleau,M.Fliess, An Algebraic Interpretation of the Structure Algorithm with an Application to Feedback Decoupling,Proceedings of the NOLCOS 92 Bordeaux, 489–494.Google Scholar
  5. [5]
    G.Conte,A.M.Perdon,C.H.Moog, A Differential Algebraic Setting for Analytic Nonlinear Systems, Proceedings of the NOLCOS 92 Bordeaux, 203–208.Google Scholar
  6. [6]
    H.Fehren, Multiparameteranalyse linearer zeitinvarianter Mehrgrößenregelkreise, Doctoral. Thesis, Department of Mech. Eng. (FB15) University of Kassel, 1993Google Scholar
  7. [7]
    M.Fliess, A Note on the Invertibility of Nonlinear Input/output Systems, Systems Control Lett.8, 1986, 147–151.Google Scholar
  8. [8]
    M.Fliess, Generalized linear systems with lumped or distributed parameters and differential vector spaces, Int.J.Control,Vol.49,No.6,1989,1989–1999Google Scholar
  9. [9]
    M.Fliess, Generalized controller canonical forms for linear and nonlinear dynamics, IEEE Trans Autom.Control 35 1990,994–1001.Google Scholar
  10. [10]
    M.Fliess, Some basic structural properties of generalized linear systems, Systems Control Lett.15, 1990, 391–396.Google Scholar
  11. [11]
    M.Fliess, A remark on Willems 'trajectory characterization of linear controllability, Systems Control Lett.19,1992,43–45Google Scholar
  12. [12]
    M.Fliess, Some Remarks on a New Characterization of Linear Controllability, 2.IFAC Workshop on System Structure and Control 1992, 8–11Google Scholar
  13. [13]
    C.Heij, Exact Modelling and Identifiability of Linear Systems, Automatica, Vol.28,No.2,1992,325–344Google Scholar
  14. [14]
    A.Isidori, Nonlinear Control Systems, Second Edition, Springer-Verlag 1989.Google Scholar
  15. [15]
    A.J.Krener, A.Isidori, Linearization by output injection and nonlinear observers, Systems Control Lett. 3, 1983, 47–52.Google Scholar
  16. [16]
    A.J.Krener, W.Respondek, Nonlinear observers with linearizable error dynamics, SIAM J.Control.Optim.23, 1985, 197–216.Google Scholar
  17. [17]
    D.Laugwitz, Zahlen und Kontinuum, BI-Wissenschaftsverlag 1986Google Scholar
  18. [18]
    C.T.Lin, Structural Controllability, IEEE Trans.AC-19,1974,201–208.Google Scholar
  19. [19]
    R.Moreno-Diaz Jr, K.N.Leibovic,R.Moreno-Diaz, Systems Optimization in Retinal Research, EUROCAST'91, Springer Lecture Notes in Computer Science 585, 1991, 539–546Google Scholar
  20. [20]
    J.W. Nieuwenhuis, J.C. Willems, Continuity of Dynamical Systems, Math. Control Signals Systems (1992) 5: 391–400Google Scholar
  21. [21]
    H.Nijmeijer, A.J.v.d.Schaft, Nonlin. Dyn. Control Systems, Springer, 1990.Google Scholar
  22. [22]
    U.Oberst,Multidimensional constant linear systems and duality, Preprint,University of Innsbruck,Austria, 1988Google Scholar
  23. [23]
    U.Oberst,Multidimensional Constant Linear Systems, EUROCAST`91, Springer Lecture Notes in Computer Science 585, 1991,66–72Google Scholar
  24. [24]
    F.Pichler, General Systems Theoriy Requirements for the Engeneering of Complex Models, EUROCAST`91, Springer Lecture Notes in Computer Science 585, 1991, 132–141Google Scholar
  25. [25]
    K.J.Reinschke, Multivariable Control, Springer, 1988.Google Scholar
  26. [26]
    C.P.Schnor, Rekursive Funktionen und ihre Komplexität, Teubner, 1974Google Scholar
  27. [27]
    H.Schwartz,Nichtlineare Regelungssysteme, Oldenburg-Verlag, 1991Google Scholar
  28. [28]
    H.Sira-Ramirez, Dynamical sliding mode control strategies in the regulation of nonlinear chemical processes, Int.J.Control, Vol.56, No.1, 1992, 1–21Google Scholar
  29. [29]
    H.J.Sommer, H.Hahn, Systemtheoretische Ansätze von Willems und Fliess, IMAT-Bericht, 1992Google Scholar
  30. [30]
    H.J.Sommer, Einf. flexibler Begriffe mittels Fuzzy-Logik und eine Diskussion ihrer Anwendung, Vortrag 1.Workshop Fuzzy Control, Dortmund 1991Google Scholar
  31. [31]
    C.P.Suarez Araujo, R.Moreno-Diaz, Neural Structures to Compute Homothetic Invariances for Artificial Perception Systems, EUROCAST`91, Springer Lecture Notes in Computer Science 585, 1991, 525–538.Google Scholar
  32. [32]
    J.C.Willems, Paradigmas and Puzzles in the Theory of Dynamical Systems, IEEE Transactions on Automatic Control, 36 No 3,1991,259–294Google Scholar
  33. [33]
    M.Zeitz, The extended Luenberger observer for nonlinear systems, Systems Control Lett, 9,1987,149–156.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • H. J. Sommer
    • 1
  • H. Hahn
    • 1
  1. 1.Control Engineering and Systems Theory Group, Department of Mechanical Engineering (FB 15)University of Kassel (GhK)KasselGermany

Personalised recommendations