Faster approximation algorithms for the rectilinear steiner tree problem

  • Ulrich Fößmeier
  • Michael Kaufmann
  • Alexander Zelikovsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 762)


The classical Steiner Tree Problem requires a shortest tree spanning a given vertex subset within a graph G=(V, E). An important variant is the Steiner tree problem in rectilinear metric. Only recently two algorithms were found which achieve better approximations than the ’traditional’ one with a factor of 3/2. These algorithms with an approximation ratio of 11/8 are quite slow and run in time O(n3) and O(n5/2). A new simple implementation reduces the time to O(n3/2). As our main result we present efficient parameterized algorithms which reach a performance ratio of 11/8+ε for any ε>0 in time O(n · log2n), and a ratio of 11/8+log log n log n in time O(n · log3n).


Algorithms Steiner tree Approximations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Berman. Personal communication. 1992.Google Scholar
  2. 2.
    P. Berman, V. Ramaiyer. Improved approximations for the Steiner tree problem. Proceedings, 3rd ACM-SiAM Symposium on Discrete Algorithms, 325–334, 1992.Google Scholar
  3. 3.
    M.W.Bern, R.L.Graham. The shortest-network problem. Sci.American, 1, 66–71, 1989.Google Scholar
  4. 4.
    Ding-Zhu Du, Yanjun Zhang, Qing Feng. On better heuristic for Euclidean Steiner minimum trees. Proceedings, 32nd Foundations of Computer Science, 431–439, 1991.Google Scholar
  5. 5.
    D. Eppstein, G.F. Italiano, et al. Maintenance of a Minimum Spanning Forest in a Dynamic Planar Graph. Proceedings of 1st ACM-SIAM Symposium on Discrete Algorithms, 1–11, 1990.Google Scholar
  6. 6.
    G. Frederickson. Data structures for On-Line Updating of Minimum Spanning Trees, with Applications. SIAM J.Comp., 14, 781–789, 1985.CrossRefGoogle Scholar
  7. 7.
    M.R.Garey, D.S.Johnson. The rectilinear Steiner problem is NP-complete. SIAM J.Appl.Math., 32, 826–834, 1977.CrossRefGoogle Scholar
  8. 8.
    E.N.Gilbert, H.O.Pollak. Steiner minimal trees. SIAM J.Appl.Math., 16, 1–29, 1968.CrossRefGoogle Scholar
  9. 9.
    M.Hanan. On Steiner's Problem with Rectilinear Distance. SIAM J.Appl.Math., 14, 255–265, 1966.CrossRefGoogle Scholar
  10. 10.
    F.K.Hwang. On Steiner minimal trees with rectilinear distance. SIAM J.Appl.Math., 30, 104–114, 1976.CrossRefGoogle Scholar
  11. 11.
    R. M. Karp. Reducibility among combinatorial problems. In Miller and Thatcher (eds.), Complexity of Computer Computations, Plenum Press, New York 85–103, 1972.Google Scholar
  12. 12.
    B.Korte, H.J.Prömel, A. Steger. Steiner Trees in VLSI-Layout. In Korte et al.: Paths, Flows and VLSI-Layout, Springer, 1990.Google Scholar
  13. 13.
    Th.Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley, 1990.Google Scholar
  14. 14.
    K. Mehihorn. Data Structures and Algorithms III: Multidimensional Data Structures and Comp. Geo. Springer, 1985.Google Scholar
  15. 15.
    D.Richards. Fast heuristic algorithms for rectilinear Steiner trees. Algorithmica, 4, 191–207, 1989.CrossRefGoogle Scholar
  16. 16.
    H. Takahashi, A. Matsuyama. An approximate solution for the Steiner problem in graphs. Math. Japonica, 24: 573–577, 1980.Google Scholar
  17. 17.
    Y.F.Wu, P.Widmayer, C.K.Wong. A faster approximation algorithm for the Steiner problem in graphs. Acta Informatica 23, 223–229, 1986.CrossRefGoogle Scholar
  18. 18.
    A.C.Yao. On constructing minimum spanning trees in k-dimensional space and related problems. SIAM J. Comput., 11, 721–736, 1982.CrossRefGoogle Scholar
  19. 19.
    A. Z. Zelikovsky. An 11/6-approximation algorithm for the Steiner problem on graphs. Algorithmica 9, 463–470, 1993.CrossRefGoogle Scholar
  20. 20.
    A. Z. Zelikovsky. The 11/8-approximation algorithm for the Steiner problem on Networks with rectilinear distance. In Sets, Graphs and Numbers. Coll. Math. Soc. J. Bolyai 60, 733–745, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Ulrich Fößmeier
    • 1
  • Michael Kaufmann
    • 1
  • Alexander Zelikovsky
    • 2
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenGermany
  2. 2.Institute of MathematicsKishinevMoldova

Personalised recommendations