Advertisement

Weighted independent perfect domination on cocomparability graphs

  • Gerard J. Chang
  • C. Pandu Rangan
  • Satyan R. Coorg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 762)

Abstract

Suppose G=(V,E) is a graph in which every vertex v ∃ V is associated with a cost c(v). This paper studies the weighted independent perfect domination problem on G, i.e., the problem of finding a subset D of V such that every vertex in V is equal or adjacent to exactly one vertex in D and σ{c(v): v ∃ D is minimum. We give an OVE¦) algorithm for the problem on cocomparability graphs. The algorithm can be implemented to run in OV¦2.37) time. With some modifications, the algorithm yields an OV¦ + ¦E¦) algorithm on interval graphs, which are special cocomparability graphs.

Keywords

independent perfect domination cocomparability graph interval graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Arvind and C. Pandu Rangan, Efficient algorithms for domination problems on cocompaxability graphs, Technical Report TR-TCS-90-18 (1990), Department of Computer Science and Engineering, Indian Institute of Technology, Madras.Google Scholar
  2. 2.
    D. W. Bange, A. E. Barkauskas, and P. T. Slater, Efficient dominating sets in graphs, Applications of Discrete Mathematics, R. D. Ringeisen and F. S. Roberts, eds., SIAM, Philad. (1988)189–199.Google Scholar
  3. 3.
    A. A. Bertossi, Total domination in interval graphs, Inform. Processing Letters 23 (1986) 131–134.CrossRefGoogle Scholar
  4. 4.
    A. A. Bertossi, On the domatic number of interval graph, Inform. Processing Letters 28 (1988) 275–280.CrossRefGoogle Scholar
  5. 5.
    A. A. Bertossi and A. Gori, Total domination and irredundance in weighted interval graphs, SIAM J. Disc. Math. 1 (1988) 317–327.CrossRefGoogle Scholar
  6. 6.
    N. Biggs, Perfect codes in graphs, J. Comb. Theory, Series B 15 (1973) 289–296.Google Scholar
  7. 7.
    M. S. Chang and Y. C. Liu, Polynomial algorithms for the weighted perfect domination problems on chordal graphs and split graphs, (1993) manuscript.Google Scholar
  8. 8.
    M. S. Chang and Y. C. Liu, Polynomial algorithms for the weighted perfect domination problems on interval graphs, (1993) manuscript.Google Scholar
  9. 9.
    D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progression, Proceedings 19th Annual ACM Sysposium on Theory of Computing (1987) 1–6.Google Scholar
  10. 10.
    M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York (1980).Google Scholar
  11. 11.
    J. K. Keil, Total domination in interval graphs, Inform. Processing Letters 22 (1986) 171–174.MathSciNetGoogle Scholar
  12. 12.
    D. Kratsch and L. Stewart, Domination on cocomparability graphs, (1989), preprint.Google Scholar
  13. 13.
    M. Livingston and Q. F. Stout, Perfect dominating sets, Congressus Numerantium 79 (1990) 187–203.Google Scholar
  14. 14.
    T. L. Lu, P. H. Ho and G. J. Chang, The domatic number problem in interval graphs, SIAM J. Disc. Math. 3 (1990) 531–536.CrossRefGoogle Scholar
  15. 15.
    G. Ramalingam and C. Pandu Rangan, Total domination in interval graphs revisited, Inform. Processing Letters 27 (1988) 17–21.CrossRefGoogle Scholar
  16. 16.
    G. Ramalingam and C. Pandu Rangan, A unified approach to domination problems on interval graphs, Inform. Processing Letters 27 (1988) 271–274.CrossRefGoogle Scholar
  17. 17.
    J. Spinrad, Transitive orientation in (n 2) time, 15th STOC Proceedings (1983) 457–466.Google Scholar
  18. 18.
    A. Srinivasa Rao and C. Pandu Rangan, Linear algorithm for domatic number problem on interval graphs, Inform. Processing Letters 33 (1989/90) 29–33.CrossRefGoogle Scholar
  19. 19.
    C. C. Yen, Algorithmic Aspects of Perfect Domination, Ph. D thesis, Institute of Information Science, National Tsing Hua University, Taiwan (1992).Google Scholar
  20. 20.
    C. C. Yen and R. C. T. Lee, The weighted perfect domination problem, Inform. Processing Letters 35 (1990) 295–299.CrossRefGoogle Scholar
  21. 21.
    C. C. Yen and R. C. T. Lee, A linear time algorithm to solve the weighted perfect domination problem in series-parallel graphs, European J. Operational Research (1992), to appear.Google Scholar
  22. 22.
    C. C. Yen and R. C. T. Lee, The weighted perfect domination problem and its variants, manuscript.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Gerard J. Chang
    • 1
  • C. Pandu Rangan
    • 2
  • Satyan R. Coorg
    • 2
  1. 1.Department of Applied MathematicsNational Chiao Tung UniversityHsinchuTaiwan, Republic of China
  2. 2.Department of Computer Science and EngineeringIndian Institute of TechnologyMadrasIndia

Personalised recommendations