Optimal group gossiping in hypercubes under wormhole routing model

  • Satoshi Fujita
  • Masafumi Yamashita
  • Tadashi Ae
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 762)


This paper introduces a new gossiping problem of exchanging tokens among specified nodes. We call this problem the group gossiping problem. The group gossiping problem is a generalization of the usual gossiping problem, which has been investigated extensively during the last decade. In this paper, we consider the gossiping problem in n-cubes under the wormhole routing model, which is a model of the communication by the wormhole switching. We propose an asymptotically optimal group gossiping algorithm for n-cubes under the model.


parallel algorithm gossiping wormhole routing optimal time bound n-cubes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bagchi, S. L. Hakimi. J. Mitchem, and E. Schmeichel. Parallel algorithms for gossiping by mail. Inform. Process. Lett., 34:197–202, April 1990.Google Scholar
  2. 2.
    W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor interconnection network. IEEE Trans. Comput., 36(5):547–553, May 1987.Google Scholar
  3. 3.
    R. C. Entringer and P. J. Slater. Gossips and telegraphs. J. Franklin Inst., 307:353–360, 1979.CrossRefGoogle Scholar
  4. 4.
    A. M. Farley. Minimum-time line broadcast networks. Networks, 10:59–70, 1980.Google Scholar
  5. 5.
    C. J. Glass and L. M. Ni. Adaptive routing in mesh-connected networks. In Proc. ICDC '92, pages 12–19. IEEE, 1992.Google Scholar
  6. 6.
    S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman. A survey of gossiping and broadcasting in communication networks. Networks, 18:319–349, 1988.Google Scholar
  7. 7.
    D. W. Krumme. Fast gossiping for the hypercube. SIAM J. Comput, 21(2):365–380, April 1992.MathSciNetGoogle Scholar
  8. 8.
    D. W. Krumme, G. Cybenko, and K. N. Venkataraman. Gossiping in minimal time. SIAM J. Comput, 21(1):111–139, February 1992.MathSciNetGoogle Scholar
  9. 9.
    A. Sengupta and S. Bandyopadhayay. Deadlock-free routing in k-ary hypercube network in presence of processor failures. Inform. Process. Lett., 34:323–328, May 1990.MathSciNetGoogle Scholar
  10. 10.
    A. Trew and G. Wilson, editors. Past, Present, Parallel: A Survey of Available Parallel Computer Systems, chapter 4, pages 125–147. Springer-Verlag, 1991.Google Scholar
  11. 11.
    H. Xu, P. K. McKinley, and L. M. Ni. Efficient implementation of barrier sychronization in wormhole-routed hypercube multicomputers. In Proc. ICDC '92, pages 118–125. IEEE, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Satoshi Fujita
    • 1
  • Masafumi Yamashita
    • 1
  • Tadashi Ae
    • 1
  1. 1.Department of Electrical Engineering Faculty of EngineeringHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations