Mapping dynamic data and algorithm structures into product networks

  • Sabine R. öhring
  • Sajal K. Das
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 762)


This paper presents optimal dynamic embeddings of dynamically growing or shrinking trees and three types of dynamically evolving grids into the de Bruijn graphs, and product networks such as (generalized) hypercube, hyper-de Bruijn, hyper Petersen, folded Petersen and product-shuffle networks.

Our results are important in mapping data and algorithm structures into multiprocessor interconnection networks. Tree embeddings can be used to maintain dynamic data structures such as quad-trees in image processing or data dictionaries, or to efficiently parallelize tree-based computations in divide-and-conquer or branch-and-bound algorithms. Dynamic embeddings of grids are used to parallelize solution methods for partial differential equations, for adaptive mesh refinement or hierarchical domain decomposition in approximation and interpolation of surfaces, image processing, or dynamic programming algorithms.


de Bruijn dynamic embedding folded Petersen grid hypercube hyper-de Bruijn hyper Petersen product-shuffle tree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Ganesan and D.K. Pradhan. The hyper-de bruijn multiprocessor networks. In Proc. 11th Conf. on Distributed Computing Systems, pp. 492–499, Arlington, TX, May 1991.Google Scholar
  2. 2.
    A.L. Rosenberg. Product-shuffle networks: Towards Reconciling Shuffles and Butterflies. Discrete Applied Mathematics, vol. 37/38, July 1992.Google Scholar
  3. 3.
    S.K. Das and A.K. Banerjee. Hyper petersen network: Yet another hypercube-like topology. In Proc. 4th Symp. on the Frontiers of Massively Parallel Computation (Frontiers' 92), pp. 270–277, McLean, Virginia, USA, Oct. 1992.Google Scholar
  4. 4.
    S. öhring and S.K. Das. The Folded Petersen Network: A New Communication-Efficient Multiprocessor Topology. In Proc. 1993 Int. Conf. on Parallel Processing., vol. I, pp. 311–314, Aug. 1993.Google Scholar
  5. 5.
    F.T. Leighton, M.J. Newman, A.G. Ranade, and E.J. Schwabe. Dynamic Tree Embeddings in Butterflies and Hypercubes. SIAM Journal on Computing, 21(4):639–654, Aug. 1992.CrossRefGoogle Scholar
  6. 6.
    S.K. Das and S. öhring. Embeddings ofTree-Related Topologies in Hyper Petersen Networks. Technical Report CRPDC-92-16, Univ. North Texas, Univ. Wuerzburg, Sep. 1992.Google Scholar
  7. 7.
    S. öhring. Dynamic Tree Embeddings into de Bruijn Graphs. In Lecture Notes in Computer Science, vol. 634, pp. 783–784. Springer, Sep. 1992.Google Scholar
  8. 8.
    S. öhring and S.K. Das. Dynamic Embeddings of Trees and Quasi-Grids into Hyper-de Bruijn Networks. In Proc. 7th Int. Parallel Processing Symposium, Newport Beach, CA, pp. 519–523, Apr. 1993.Google Scholar
  9. 9.
    S. öhring and S.K. Das. The Folded Petersen Network: A New Versatile Multiprocessor Interconnection Topology. to appear in Proc. 1993 Int. Workshop on Graph-Theoretic Concepts in Computer Science (WG'93), June 1993.Google Scholar
  10. 10.
    S. öhring and S.K. Das. The Folded Petersen Cube Networks: New Competitors for the Hypercube. to appear in Proc. Fifth IEEE Symp. on Par. and Dist. Computing, Dec. 1993.Google Scholar
  11. 11.
    L. Bhuyan and D.P. Agrawal. Generalized Hypercubes and Hyperbus Structures for a Computer Network. IEEE Transactions on Computers, C-33:323–333, 1984.Google Scholar
  12. 12.
    G. Chartrand and R.J. Wilson. The Petersen Graph. Graphs and Applications (Eds. F. Harary and J.S. Maybee), pp. 69–100, 1985.Google Scholar
  13. 13.
    S. öhring and S.K. Das. Mapping Dynamic Data Structures on Product Networks. Technical Report CRPDC-93-5, Univ. Wuerzburg, Univ. North Texas, Mar. 1993.Google Scholar
  14. 14.
    T.F. Chan and Y. Saad. Multigrid Algorithms on the Hypercube Multiprocessor. In IEEE Transactions on Computers, vol. C-35, No. 11, pp. 969–977, Nov. 1986.Google Scholar
  15. 15.
    L. S. Barasch, S. Lakshmivarahan, and S.K. Dall. Generalized Gray Codes and Their Properties. In Proc. 3rd Int. Conf. on Supercomputing, vol. III, pp. 331–337, 1988.Google Scholar
  16. 16.
    S.N. Bhatt, F.R.K. Chung, J.-W. Hong, F.T. Leighton, B. Obreníc, A.L. Rosenberg, and E.J. Schwabe. Optimal Embeddings by Butterfly-Like Networks. COINS Technical Report 90-108, Computer and Information Science Department, University of Massachusetts, 1990.Google Scholar
  17. 17.
    A.L. Rosenberg. personal communication, May 1992.Google Scholar
  18. 18.
    D.S. Greenberg, L.S. Heath, and A.L. Rosenberg. Optimal Embeddings of Butterfly-Like Graphs in the Hypercube. Math. Systems Theory, 23:61–77, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Sabine R. öhring
    • 1
  • Sajal K. Das
    • 2
  1. 1.Department of Computer ScienceUniversity of WürzburgWürzburgGermany
  2. 2.Department of Computer ScienceUniversity of North TexasDentonUSA

Personalised recommendations