Skip to main content

A new algorithm for automatic configuration of Hidden Markov Models

  • Selected Papers
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 744))

Abstract

Hidden Markov Models (HMM) (i.e. doubly stochastic probabilistic networks) have been widely used in analyzing time-series data such as those obtained from speech and molecular biology. A crucial issue in modeling time-series data using HMM, is the problem of determining the appropriate model architecture: the number of states and the links between the states. While current HMM training procedures iteratively optimize model parameters, they usually require the model configuration to be fixed. The task of model configuration is done manually by trained experts. In this paper we present a procedure that addresses the problem of automatically configuring HMM's. It starts with a large, possibly over-fitted HMM, and attempts to prune it down to the appropriate complexity fit. The procedure can be seen as a generalization of the wellknown iterative Baum-Welch Algorithm. The parameter re-estimates in our procedure can be formally derived and its local convergence can be formally proved. Compared to existing methods, our procedure offers the following advantages: (1) better convergence characteristics than the standard Baum-Welch algorithm, (2) automatic reduction of model size to the right complexity fit, (3) better generalization, and (4) relative insensitivity to the initial model size. We demonstrate these features by presenting empirical results on the problem of recognizing DNA promoter sequences.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Akaike. Information theory and an extension of the maximum likelihood principle. In B. Petrov and F. Csaki, editors, Proc. of the 2nd International Symposium on Information Theory, pages 267–281, Budapest, 1972. Akademiai Kaido.

    Google Scholar 

  2. H. Akaike. A new look at the statistical model identification. IEEE Trans. Automatic Control, 19(6):716–723, 1974.

    Google Scholar 

  3. K. Asai, S. Hayamizu, and K. Onizuka. HMM with protein structure grammar. In HICSS-93, 1993. to appear.

    Google Scholar 

  4. P. Baldi, Y. Chauvin, T. Hunkapiller, and McClure M. A. Hidden Markov Models in molecular biology: New algorithms and applications. In C. L. Giles, S. J. Hanson, and J. D. Cowan, editors, Advances in Neural Information Processing Systems 5. Mougan Kaufman, 1993. to appear.

    Google Scholar 

  5. L. Breiman, J. H. Friedman, Olshen R. A., and C. J. Stone. Classification and Regression Trees. The Wadsworth statistics/probability series. Wadsworth, Inc., 1984.

    Google Scholar 

  6. B. Efron. The jackknife, the bootstrap and other resampling plans. In SIAM, 1982.

    Google Scholar 

  7. T. Hanazawa, T. Kawabata, and K. Shikano. Recognition of Japanese voiced stops using Hidden Markov Models. Nihon-Onkyou-Gakkai-Shi, 45(10):776–785, 1989. (in Japanese).

    Google Scholar 

  8. D. Haussler, A. Krogh, I. S. Mian, and K. Sjölander. Protein modeling using Hid-den Markov Models: Analysis of globins. Technical Report UCSC-CRL-92-23, University of California, 1992.

    Google Scholar 

  9. S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Stat., 22:79–86, 1951.

    Google Scholar 

  10. S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An introduction to the application of the theory of probabilitic functions of a Markov process to automatic speech recognition. Bell Systems Technical Journal, 62:1035–74, 1983.

    Google Scholar 

  11. L. A. Liporace. Maximum likelihood estimation for multivariate observations of Markov sources. IEEE Trans. Info. Theory, IT-28(5):729–734, 1982.

    Google Scholar 

  12. Morita. From information coding to MDL principle. SUURI-KAGAKU, 25(8):25–31, 1987. (in Japanese).

    Google Scholar 

  13. M. Noordewier, G. Towell, and J. Shavlik. Learning to recognize promoters in DNA sequences. In Proceedings of 1990 AAAI Spring Symposium on Artificial Intelligence and Molecular Biology, 1990.

    Google Scholar 

  14. J. R. Quinlan. Generating production rules from decision trees. In Proc. of IJCAI-87, pages 304–307, 1987.

    Google Scholar 

  15. L. R. Rabiner and B. H. Juang. An introduction to Hidden Markov Models. IEEE ASSP MAGAZINE, pages 4–16, January 1986.

    Google Scholar 

  16. J. Rissanen. Modelling by shortest data description. Automatica, 14:465–471, 1978.

    Article  Google Scholar 

  17. J. Rissanen. Stochastic complexity. Journal of Royal Statistical Society, B, 49(3):223–239, 1987.

    Google Scholar 

  18. A. Stolcke and S. Omohundro. Hidden Markov Model induction by Bayesian model merging. In C. L. Giles, S. J. Hanson, and J. D. Cowan, editors, Advances in Neural Information Processing Systems 5. Morgan Kaufman, 1993. to appear.

    Google Scholar 

  19. J. Takami and S. Sagayama. A successive state splitting algorithm for efficient allophone modeling. In Proceedings of ICASSP, 1992.

    Google Scholar 

  20. S. M. Weiss and N. Indurkhya. Reduced complexity rule induction. In Proc. of IJCAI-91, pages 678–684, 1991.

    Google Scholar 

  21. S. M. Weiss and C. Kulikowski. Computer Systems That Learn. Morgan Kaufmann, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus P. Jantke Shigenobu Kobayashi Etsuji Tomita Takashi Yokomori

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iwayama, M., Indurkhya, N., Motoda, H. (1993). A new algorithm for automatic configuration of Hidden Markov Models. In: Jantke, K.P., Kobayashi, S., Tomita, E., Yokomori, T. (eds) Algorithmic Learning Theory. ALT 1993. Lecture Notes in Computer Science, vol 744. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57370-4_51

Download citation

  • DOI: https://doi.org/10.1007/3-540-57370-4_51

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57370-8

  • Online ISBN: 978-3-540-48096-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics