Feistel type authentication codes

  • Reihaneh Safavi-Naini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 739)


In this paper we generalise Luby-Rackoff construction of pseudorandom permutation generators to generalised invertible function generators and prove that if there exits a generalised pseudorandom function generator then there exist a generalised pseudorandom invertible generator. This construction is then used for a pseudorandom authentication code which offers provable security against T-fold chosen plaintext/ciphertext attack and provable perfect protection against strong spoofing of order T. The performance of the code is compared with that of a code obtained from a Feistel type permutation generator. The code, called Feistel type A-code, provides a new approach to the design of practically good A-codes and hence is of high practical significance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.J. Simmons, Authentication theory/coding theory, in Advances in Cryptology, Proceedings of Crypto 84, Springer-Verlag (Berlin), 1985, pp. 411–431.Google Scholar
  2. 2.
    G.J. Simmons, A game theory model of digital message authentication, Congressus Numerantium, 34(1982), pp. 413–424.Google Scholar
  3. 3.
    D.R. Stinson, A construction for authentication/secrecy codes from certain combinatorial designs, in Advances in Cryptology: Proceedings of Crypto 87, Springer-Verlag (Berlin), 1988, pp. 355–366.Google Scholar
  4. 4.
    D.R. Stinson, Some constructions and bounds for authentication codes, Journal of Cryptology 1 (1988), pp. 37–51.CrossRefGoogle Scholar
  5. 5.
    M. De Soete, Some constructions for authentication-secrecy codes, in Advances in Cryptology: Eurocrypt '88, Springer-Verlag (Berlin), pp. 57–76.Google Scholar
  6. 6.
    M. De Soete, Bounds and constructions for authentication-secrecy codes, in Advances in Cryptology: Crypto '88, Springer-Verlag (Berlin), pp. 311–317.Google Scholar
  7. 7.
    G.J. Simmons, A survey of information authentication, Proceedings of IEEE, pp. 603–620, 1988, Vol. 76, No. 5.Google Scholar
  8. 8.
    R.S. Safavi-Naini and J.R. Seberry, Error correcting codes for authentication and subliminal channel, IEEE Transaction on Information Theory, pp. 13–17, Vol. 37, No.1, 1990.CrossRefGoogle Scholar
  9. 9.
    J. Pieprzyk and R. S. Safavi-Naini, Pseudorandom authentication systems, Abstarcts of Eurocrypt '91, Brighton.Google Scholar
  10. 10.
    M. Luby and C. Rackoff, How to construct pseudorandom permutations from pseudorandom functions, SIAM J. Comput., 17(1988), pp.373–386.CrossRefGoogle Scholar
  11. 11.
    O. Goldreich, S. Goldwasser and S. Micalli, How to construct random functions, in Proceedings of the 25th Annual Symposium on Foundation of Computer Science, October 24–26, 1984.Google Scholar
  12. 12.
    L. A. Levin, One-way functions and pseudorandom generators, in Proceedings of the 17th ACM Symposium on Theory of Computing, Providence, RI, 1985, pp. 33—365.Google Scholar
  13. 13.
    Y. Zheng, T. Matsumoto and H. Imai, Impossibility and optimality results on constructing permutations, in Abstracts of Eurocrypt '89, Houthalen, Belgium, April 1989.Google Scholar
  14. 14.
    J. Pieprzyk, How to construct pseudorandom permutations from single pseudorandom functions, in Abstarcts of Eurocrypt '90, Aarhus, Denmark, May 1990.Google Scholar
  15. 15.
    J. L. Massey, Cryptography-a selective survey, Digital Communications, Elsvier Science Publishers, 1986, pp. 3–21.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Reihaneh Safavi-Naini
    • 1
  1. 1.Department of Maths., Stats. and Computing ScienceUniversity of New EnglandArmidaleAustralia

Personalised recommendations