Hybrid Systems: the SIGNAL approach

  • Albert Benveniste
  • Michel Le Borgne
  • Paul Le Guernic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 736)


Hybrid Systems are models of systems operating in real-time and handling events as well as “continuous” computations. The Signal formalism for Hybrid Systems is presented in this paper. Its expressive power is discussed, and a general method, to associate various formal systems with it, is presented with applications to Signal compilation and proof system.


hybrid systems real-time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.J. Aström, A. Benveniste (chairman), P.E. Caines, G. Cohen, L. Ljung, P. Varaiya, “Facing the challenge of computer science in the industrial applications of control, a joint IEEE-IFAC project, advance report”, IRISA, 1991, see also the two reports by A. B. and G. C. in IEEE Control Systems, vol 11, No 4, 87–94, June 1991.Google Scholar
  2. 2.
    K.J. Aström, B. Wittenmark, Adaptive Control, Addison-Wesley series in Electrical Eng.: Control Eng., Addison-Wesley, 1989.Google Scholar
  3. 3.
    M. Basseville, A. Benveniste Eds, Detecting changes in signals and systems, LNCIS vol 77, Springer Verlag, 1986.Google Scholar
  4. 4.
    M. Basseville, I.V. Nikiforov, Detection of Abrupt Changes — Theory and Applications, Prentice Hall Information and Systems Sciences Series, Prentice Hall, to appear 1993.Google Scholar
  5. 5.
    A. Benveniste, G. Berry, “Real-Time systems design and programming”, Another look at real-time programming, special section of Proc. of the IEEE, vol. 9 n∘ 9, September 1991, 1270–1282.Google Scholar
  6. 6.
    A. Benveniste, P. Le Guernic, Y. Sorel, M. Sorine, “A denotational theory of synchronous communicating systems”, Information and Computation, vol. 99 n∘2, August 1992, 192–230.Google Scholar
  7. 7.
    A. Benveniste, P. Le Guernic, “Hybrid Dynamical Systems Theory and the Signal Language”, IEEE transactions on Automatic Control, 35(5), May 1990, pp. 535–546.Google Scholar
  8. 8.
    A. Benveniste, P. Le Guernic, C. Jacquemot, “Synchronous programming with events and relations: the Signal language and its semantics”, Science of Computer Programming, 16 (1991) 103–149.Google Scholar
  9. 9.
    A. Benveniste, “Constructive probability and the Sign alea language”, INRIA res. rep. n∘ 1532, 1991.Google Scholar
  10. 10.
    B. Buchberger, “Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory” N.K. Bose (ed.), Multidimensional Systems Theory, 184–232, D. Reidel Publishing Company.Google Scholar
  11. 11.
    L. Besnard, “Compilation de Signal: horloges, dépendances, environnement”, Thesis, IFSIC-IRISA, 1991.Google Scholar
  12. 12.
    F. Boussinot, R. de Simone, “The Esterel language”, Another look at real-time programming, special section of Proc. of the IEEE, vol. 9 n∘ 9, September 1991, 1293–1304.Google Scholar
  13. 13.
    B. Dutertre, “Spécification et preuve de Systèmes Dynamiques”, PhD thesis, University of Rennes I, IRISA, December 2, 1992.Google Scholar
  14. 14.
    N. Halbwachs, P. Caspi, D. Pilaud, “The synchronous dataflow programming language Lustre”, Another look at real-time programming, special section of Proc. of the IEEE, vol. 9 n∘ 9, September 1991, 1305–1320.Google Scholar
  15. 15.
    T.A. Henzinger, Z. Manna, A. Pnueli, “An Interleaving Model for Real-time”, Jersalem Conf. on Information Technology 1990, IEEE Computer Society Press.Google Scholar
  16. 16.
    T.A. Henzinger, Z. Manna, A. Pnueli, “Temporal proof methodologies for Real-time systems”, POPL'91.Google Scholar
  17. 17.
    T.A. Henzinger, Z. Manna, A. Pnueli, “Timed Transition Systems”, in J.W. de Bakker, K. Huizing, W-P de Roever, and G. Rozenberg Eds., Real-Time: theory in practice, LNCS vol 600, 226–251, Springer Verlag, 1992.Google Scholar
  18. 18.
    L. Lamport, “Hybrid Systems in TLA”, draft provided in the handouts of Workshop on Theory of Hybrid Systems, Tech. Univ. of Denmark, Lyngby, Denmark, 19–21 October, 1992.Google Scholar
  19. 19.
    M. Le Borgne, A. Benveniste, P. Le Guernic, “Polynomial Ideal Theory Methods in Discrete Event, and Hybrid Dynamical Systems”, in Proceedings of the 28th IEEE Conference on Decision and Control, IEEE Control Systems Society, Volume 3 of 3, 1989, pp. 2695–2700.Google Scholar
  20. 20.
    P. Le Guernic, T. Gautier, M. Le Borgne, C. Le Maire, “Programming realtime applications with Signal”, Another look at real-time programming, special section of Proc. of the IEEE, vol. 9 n∘ 9, September 1991, 1321–1336.Google Scholar
  21. 21.
    X. Nicollin, J. Sifakis, S. Yovine, “From ATP to Timed Graphs and Hybrid Systems”, REX workshop “Real-Time, theory in practice”, Mook, The Netherlands, June 3–7, 1991.Google Scholar
  22. 22.
    A.P. Ravn, H. Rischel, K.M. Hansen “Specifying and verifying requirements of real-time systems”, to appear in IEEE Trans. on Software Eng., Jan. 1993, pp. 41–55.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Albert Benveniste
    • 1
  • Michel Le Borgne
    • 1
  • Paul Le Guernic
    • 2
  1. 1.INRIA-IRISAFrance
  2. 2.Campus BeaulieuIRISA-UniversityRennes CedexFrance

Personalised recommendations