Advertisement

Complexity of disjoint paths problems in planar graphs

  • Alexander Schrijver
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 726)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Fortune, J. Hopcroft and J. Wyllie, The directed subgraph homeomorphism problem, Theoretical Computer Science 10 (1980) 111–121.Google Scholar
  2. 2.
    R.M. Karp, On the computational complexity of combinatorial problems, Networks 5 (1975) 45–68.Google Scholar
  3. 3.
    M.R. Kramer and J. van Leeuwen, The complexity of wire routing and finding the minimum area layouts for arbitrary VLSI circuits, in: ” VLSI Theory” (F.P. Preparata, ed.), JAI Press, London, pp. 129–146.Google Scholar
  4. 4.
    J.F. Lynch, The equivalence of theorem proving and the interconnection problem, (ACM) SIGDA Newsletter 5 (1975) 3:31–36.Google Scholar
  5. 5.
    B. Reed, N. Robertson, A. Schrijver and P.D. Seymour, Finding disjoint trees in planar graphs in linear time, in: “Graph Structures” (N. Robertson and P.D. Seymour, eds.), A.M.S. Contemporary Mathematics Series, American Mathematical Society, 1993.Google Scholar
  6. 6.
    H. Ripphausen, D. Wagner, and K. Weihe, The vertex-disjoint Menger problem in planar graphs, preprint, 1992.Google Scholar
  7. 7.
    N. Robertson and P.D. Seymour, Graph minors XIII. The disjoint paths problem, preprint, 1986.Google Scholar
  8. 8.
    N. Robertson and P.D. Seymour, Graph Minors XXII. Irrelevant vertices in linkage problems, preprint, 1992.Google Scholar
  9. 9.
    A. Schrijver, Finding k disjoint paths in a directed planar graph, SIAM Journal on Computing, to appear.Google Scholar
  10. 10.
    H. Suzuki, T. Akama, and T. Nishiseki, An algorithm for finding a forest in a planar graph — case in which a net may have terminals on the two specified face boundaries (in Japanese), Denshi Joho Tsushin Gakkai Ronbunshi 71-A (1988) 1897–1905 (English translation: Electron. Comm. Japan Part III Fund. Electron. Sci. 72 (1989) 10:68–79).Google Scholar
  11. 11.
    D. Wagner and K. Weihe, A linear-time algorithm for edge-disjoint paths in planar graphs, preprint, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Alexander Schrijver
    • 1
  1. 1.CWI and UniversityAmsterdamThe Netherlands

Personalised recommendations