Advertisement

In-place arithmetic for polynomials over Zn

  • Michael Monagan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 721)

Abstract

We present space and time efficient algorithms for univariate polynomial arithmetic operations over Z mod n where the modulus n does not necessarily fit into is not a machine word. These algorithms provide the key tools for the efficient implementation of polynomial resultant gcd and factorization computation over Z, without having to write large amounts of code in a systems implementation language.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berlekamp E.R. Factoring Polynomials over Finite Fields. Bell System Technical Journal, No 46 1853–1859, 1967.Google Scholar
  2. 2.
    Berlekamp E.R. Factoring Polynomials over Large Finite Fields. Mathematics of Computation, 24 713–715, 1970.Google Scholar
  3. 3.
    Brown W.S. On Euclid's Algorithm and the Computation of Polynomial Greatest Common Divisors. JACM, 18, 478–504, 1971.Google Scholar
  4. 4.
    Brown W.S., Traub J.F. On Euclid's Algorithm and the Theory of Subresultants. JACM, 18, 505–514, 1971.Google Scholar
  5. 5.
    B. Buchberger, A Theoretical Basis for the Reduction of Polynomials to Canonical Forms, ACM SIGSAM Bulletin, 9, (4), November 1976.Google Scholar
  6. 6.
    Cantor D.G., Zassenhaus H. A New Algorithm for Factoring Polynomials over a Finite Field. Mathematics of Computation, 36, 587–592, 1981.Google Scholar
  7. 7.
    Char, B.W., Geddes K.O., Gonnet, G.H. GCDHEU: Heuristic Polynomial GCD Algorithm Based On Integer GCD Computation. Proceedings of Eurosam 84. Springer-Verlag Lecture Notes in Computer Science, 174, 285–296, 1984.Google Scholar
  8. 8.
    Collins G.E. Subresultants and Reduced Polynomial Remainder Sequences. JACM, 14, 128–142, 1967.Google Scholar
  9. 9.
    Collins G.E. The Calculation of Multivariate Polynomial Resultants. JACM, 18, 515–532, 1971.Google Scholar
  10. 10.
    Geddes K.O., Labahn G., Czapor S.R. Algorithms for Computer Algebra. To appear 1992.Google Scholar
  11. 11.
    Johnson S.C., Graham R.L. Problem #7 SIGSAM Bulletin issue number 29, 8 (1), February 1974.Google Scholar
  12. 12.
    Kaltofen E. Computing with Polynomials Given by Straight-Line Programs: I Greatest Common Divisors. Proceedings of the 17th Annual ACM Symposium on the Theory of Computing, 131–142, 1985.Google Scholar
  13. 13.
    Knuth, D.E. The Art of Computer Programming Vol. 2: Seminumerical Algorithms (Second Edition). Addison-Wesley, Reading Massachusetts, 1981.Google Scholar
  14. 14.
    Langemyr, L., McCallum, S. The Computation of Polynomial Greatest Common Divisors. Proceedings of EUROCAL, 1987.Google Scholar
  15. 15.
    Maple V Language Reference Manual Springer-Verlag, 1991.Google Scholar
  16. 16.
    R. Peikert, D. Wuertz, M. Monagan, C. de Groot Packing Circles in a Square: A Review and New Results. IPS Research Report No. 91-17, September 1991 ETH-Zentrum, CH-8092 Zurich, Switzerland.Google Scholar
  17. 17.
    Geddes K.O., Gonnet G.H., Smedley T.J. Heuristic Methods for Operations with Algebraic Numbers. Proceedings of the ACM-SIGSAM 1988 International Symposium on Symbolic and Algebraic Computation, ISSAC '88, 1988.Google Scholar
  18. 18.
    Smedley T.J. A New Modular Algorithm for Computation of Algebraic Number Polynomial Gcds. Proceedings of the ACM-SIGSAM 1988 International Symposium on Symbolic and Algebraic Computation, ISSAC '89, 91–94, 1989.Google Scholar
  19. 19.
    David Yun, The Hensel Lemma in Algebraic Manipulation. Ph.D. Thesis, Massachusetts Institute of Technology.Google Scholar
  20. 20.
    Paul Zimmerman, A comparison of Maple V, Mathematica 1.2 and Macsyma 3.09 on a Sun 3/60. mathPAD newsletter 1 (2), April 1991. Gruppe math PAD, Universität Paderborn.Google Scholar
  21. 21.
    Zippel R. Probabilistic Algorithms for Sparse Polynomials. Proceedings of Eurosam 79. Springer-Verlag Lecture Notes in Computer Science, No 72, 216–226, 1979.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Michael Monagan
    • 1
  1. 1.Institut für Wissenschaftliches Rechnen ETH-ZentrumZürichSwitzerland

Personalised recommendations