Advertisement

Acquisition of gradual knowledge

Life Cycle and Methodologies Elicitation Techniques
Part of the Lecture Notes in Computer Science book series (LNCS, volume 723)

Abstract

Topoi are gradual inference rules, often used by experts in several problem classes: they can be exploited at various phases of a knowledge-based system life cycle. They can be studied at the two levels distinguished by Newell: the knowledge level and the symbol level. Some knowledge elicitation techniques such as rating grids and some knowledge acquisition methods such as KADS and KOD can be exploited in order to facilitate the acquisition of topoi. At the symbol level, different representations and implementations of topoi can be proposed and topoi can be formalized through several qualitative physics formalisms.

Keywords

Knowledge Acquisition Problem Class Knowledge Level Generic Task Knowledge Engineer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Albert and C. Vogel. Kod-station un environnement intégré pour le génie cognitif. Génie logiciel et systèmes experts, (19):28–30, Juin 1989.Google Scholar
  2. 2.
    J. C. Anscombre and O. Ducrot. L'argumentation dans la langue. Mardaga, Bruxelles, 1983.Google Scholar
  3. 3.
    R. D. Bakker. Knowledge graphs: representation and structuring of scientific knowledge. PhD thesis, University of Twente, 1987.Google Scholar
  4. 4.
    N. Bonnardel. Le rôle de l'évaluation dans les activités de conception, Juillet 1992. Thèse de Doctorat en Psychologie, Université de Provence.Google Scholar
  5. 5.
    J. H. Boose. Personal Construct Theory and the Transfer of Human Expertise. In Proc. of AAAI-84, pp. 27–33, Austin, Texas, USA, August 1984.Google Scholar
  6. 6.
    J. H. Boose. A Knowledge Acquisition Program for Expert Systems based on Personal Construct Psychology. Int. Journal of Man-Machine Studies, 23:495–525, 1985.Google Scholar
  7. 7.
    J. H. Boose and J. M. Bradshaw. Expertise transfer and complex problems: using AQUINAS as a knowledge-acquisition workbench for knowledge-based systems. International Journal of Man-Machine Studies, 26:3–28, 1987.Google Scholar
  8. 8.
    J. H. Boose, J. M. Bradshaw, C. M. Kitto, and D. B. Schema. From ETS to AQUINAS: Six years of Knowledge Acquisition Tool Development. In Proc. of KAW'89, pp. 5.1–5.17, Banff, Canada, October 1989.Google Scholar
  9. 9.
    B. Bouchon-Meunier and S. Despres. Acquisition numérique/symbolique de connaissances graduelles. In Actes des 3èmes Journées nationales du PRC-GDR Intelligence Artificielle, pp. 127–138, Paris, La Défense, Mars 1990. Hermès.Google Scholar
  10. 10.
    J. Breuker and B. Wielinga. Models of Expertise in Knowledge Acquisition. In Guida and Tasso, editors, Topics in Expert System Design. North-Holland, Elsevier Science Publisher B.V., 1989.Google Scholar
  11. 11.
    J. Breuker, B. Wielinga, M. van Someren, R. de Hoog, G. Schreiber, P. de Greef, B. Bredeweg, J. Wielemaker, and J.-P. Billault. Model Driven Knowledge Acquisition: Interpretation Models, 1987. Del. A1, Esprit Proj. 1098, Memo 87.Google Scholar
  12. 12.
    S. Bruxelles and P. Y. Raccah. Information and argumentation: the expression of the consequence. In COGNITIVA'87, vol. 1, pp. 445–452, Paris, May 1987.Google Scholar
  13. 13.
    T. Bylander and B. Chandrasekaran. Generic Tasks in Knowledge-Based Reasoning: the ‘Right’ Level of Abstraction for Knowledge Acquisition. International Journal of Man-Machine Studies, 26:231–244, 1987.Google Scholar
  14. 14.
    F. Cerbah, C. Fournier, and P.-Y. Raccah. Qualitative Reasoning and Argumentation: a Study of some Affinities when Generating Causal Explanations. In M. G. Singh and L. Travé-Massuyès, eds, Decision Support Systems and Qualitative Reasoning, pp. 229–234, North-Holland.Google Scholar
  15. 15.
    B. Chandrasekaran. Towards a Functional Architecture for Intelligence Based on Generic Information Processing Tasks. In Proc. of the 10th IJCAI, volume 2, pp. 1183–1192, Milan, Italy, August 1987.Google Scholar
  16. 16.
    W. J. Clancey. Heuristic classification. Art. Int., 27(3):289–350, Dec. 1985.Google Scholar
  17. 17.
    W. J. Clancey. The knowledge level reinterpreted: Modeling how systems interact. Machine Learning, 4:285–291, 1989.Google Scholar
  18. 18.
    H. Davis. Using models of dynamic behavior in expert systems. In 9th Int. Workshop Expert Syst. & their Appl., pp. 393–404, Avignon, France, May–June 1989.Google Scholar
  19. 19.
    J. de Kleer and J. S. Brown. A qualitative physics based on confluences. Artificial Intelligence, 24:7–83, 1984.Google Scholar
  20. 20.
    R. Dieng. Generation of topoi in expert systems. Communication, Cognition and Artificial Intelligence, 6(4):329–340, 1989.Google Scholar
  21. 21.
    R. Dieng. Knowledge-based, relation-based and learning-based explanations. In Proceedings of the 5th Workshop on Explanations, Manchester, UK, April 1990.Google Scholar
  22. 22.
    R. Dieng. Models of Problem Solving for Knowledge Acquisition: Modelling Sisyphus'91 Office Assignment Problem with 3DKAT. In M. Linster, editor, SISY-PHUS'91: Models of Problem Solving, GMD Report n. 663, July 1992.Google Scholar
  23. 23.
    R. Dieng and B. Trousse. 3DKAT, a Dependency-Driven Dynamic-Knowledge Acquisition Tool. In Proceedings of the 3rd International Symposium on Knowledge Engineering, pp. 85–93, Madrid, Spain, 17–21 October 1988.Google Scholar
  24. 24.
    P. Dugerdil. Deep model reasoning in medical expert systems. In 10th Int. Workshop Expert Systems & their Applications: 2nd Generation Expert Systems, pp. 85–96, Avignon, May–June 1990.Google Scholar
  25. 25.
    M.-P. Epp and N. Riera. 3DKAT: Un outil d'aide à l'acquisition des connaissances, September 1989. Rapport de stage, DESS-ISI & INRIA-Sophia-Antipolis.Google Scholar
  26. 26.
    E. Faisandier. Introduction des conditions dans l'outil d'acquisition des connaissances 3DKAT, Nov. 1989. Rapp. de stage, ENSIMAG & INRIA-Sophia-Antipolis.Google Scholar
  27. 27.
    C. Ferraris. Acquisition des connaissances et raisonnement dans un univers multiagents: application à la prise de décision en génie civil urbain, Février 1992. Thèse de Doctorat en Informatique, Université de Nancy I.Google Scholar
  28. 28.
    K. D. Forbus. Qualitative process theory. Artificial Intelligence, 24:85–168, 1984.Google Scholar
  29. 29.
    M. Fornarino and A.-M. Pinna. Un modèle objet logique et relationnel: le langage OTHELO, Avril 1990. Thèse de Doctorat en Informatique, Université de Nice.Google Scholar
  30. 30.
    P. Hayes. The second naive physics manifesto. In Hobbs and Moore, eds, Formal Theories of the Common-Sense World, pp. 1–35. Ables, Norwood, NJ, 1985.Google Scholar
  31. 31.
    P. James. Structuring Knowledge using Knowledge Graphs. In Proc. of EKAW'91, Crieff, Scotland, United-Kingdom, May 1991.Google Scholar
  32. 32.
    W. Karbach, M. Linster, and A. Voss. Models, methods, roles and tasks: many labels — one idea? Knowledge Acquisition, 2:279–299, 1990.Google Scholar
  33. 33.
    G. A. Kelly. The Psychology of Personal Constructs. Norton, 1955.Google Scholar
  34. 34.
    B. J. Kuipers. Qualitative simulation. Artificial Intelligence, 29:289–338, 1986.Google Scholar
  35. 35.
    S. Lapalut. Un modèle d'acquisition des connaissances qualitatives en conception pour KATEMES. Rapp. de DEA, Univ. de Caen & INRIA, Sept. 1992.Google Scholar
  36. 36.
    J. McDermott. Preliminary Steps Toward a Taxonomy of Problem-Solving Methods. In Sandra Marcus, editor, Automating Knowledge Acquisition for Expert Systems, pp. 225–266. Kluwer Academic Publisher, 1988.Google Scholar
  37. 37.
    B. Neveu. EXPORT: an expert system in breakwater design. In ORIA '87, Artificial Intelligence and sea, pp. 11–17, 1987.Google Scholar
  38. 38.
    A. Newell. The knowledge level. Artificial Intelligence, 18:87–127, 1982.Google Scholar
  39. 39.
    J. M. Penalva and Y. Sicard. DIAPASON: prédiction et diagnostic pour la conduite de procédés continus. In ERGO-IA'90, pp. 196–207, Biarritz, Sept. 1990.Google Scholar
  40. 40.
    H. Prade. Raisonner avec des règles d'inférence graduelles: une approche basée sur les ensembles flous. Revue d'Intelligence Artificielle, 2:29–44, 1988.Google Scholar
  41. 41.
    P. Y. Raccah. Modelling argumentation and modelling with argumentation. Argumentation, 4, 1989.Google Scholar
  42. 42.
    G. Schreiber, B. Wielinga, and J. Breuker. The KADS Framework for Modelling Expertise. In Proc. of EKAW'91, Crieff, Scotland, UK, May 1991.Google Scholar
  43. 43.
    M. L. G. Shaw. A Grid-Based Tool For Knowledge Acquisition: Validation with Multiple Experts. SIGART Newsletter, Knowledge Acquisition Special Issue, 108:168–169, April 1989.Google Scholar
  44. 44.
    J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine. Reading, Addison-Wesley, 1984.Google Scholar
  45. 45.
    L. Steels. Knowledge Systems. 1991. Draft edition, VUB AI Lab, Brussels, Belgium.Google Scholar
  46. 46.
    L. Vandenbreghe. Techniques de recueil d'expertise. In Séminaire Méthodologies d'acquisition de la connaissance, IIIA, Compiègne, Sept. 1991.Google Scholar
  47. 47.
    C. Vogel. Génie Cognitif. Masson, 1988.Google Scholar
  48. 48.
    C. Vogel. How to Qualify Knowledge-Based Systems. In Proceedings of the 4th COMPASS Conference, 1989.Google Scholar
  49. 49.
    B. J. Wielinga, A. T. Schreiber, and J. A. Breuker. KADS: a modelling approach to knowledge engineering. Knowledge Acquisition, 4:5–53, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  1. 1.INRIAACACIA ProjectSophia-Antipolis CedexFrance

Personalised recommendations