The participatory design of a computer assisted knowledge engineering methodology and tool: The ALADIN+ Project

Life Cycle and Methodologies Workbenches
Part of the Lecture Notes in Computer Science book series (LNCS, volume 723)


Knowledge is produced in the context of very specific social praxis, and it's production needs energy. This energy can be made profitable if knowledge is saved and re-used to produce new adaptive solutions to more complex environments. Knowledge engineering is a praxis that is an answer to that need. This task can be assisted by a methodology and a set of tools: it is named “computer assisted knowledge engineering” (CAKE). ALADIN+, as a CAKE, is intended to assist knowledge based systems developers, either as managers, knowledge engineers, experts or users. A participatory design methodology has been set in accordance to our cybernetic approach of the organization and the design process. We describe the actual results of this situated research. The goals of the system are: to support the life cycle of Knowledge Based Systems (KBS) and to facilitate communication between KBS developers. The ALADIN+ modules are: planning, elicitation and acquisition, modelling, instantiation, evaluation and methodological assistant. ALADIN+ help developers by making knowledge engineering know-how available where it is needed.


Knowledge Acquisition Knowledge Engineering Acquisition Module Participatory Design Knowledge Engineer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angele, J., Fensel, D., Landes, D., & Studer, R. (1991). Explorative Prototyping in KADS No. 214). Universität Karlsruhe (TH) Institut Für Angewandte Informatik und Formale Beschreibungsverfahren.Google Scholar
  2. Aussenac, N. (1989) Conception d'une méthodologie et d'un outil d'acquisition de connaissances expertes. Thèse, Paul Sabatier de Toulouse.Google Scholar
  3. Beer, S. (1985). Diagnosing the system for organizations. New York: John Wiley & Sons.Google Scholar
  4. Bonnet, A. (1986). Systèmes experts: vers la maitrise technique. Paris: InterÉditions.Google Scholar
  5. Carey, S. (1990). Cognitive Development. In D. Osherson & E. E. Smith (Eds.), Thinking (pp. 147–172). Cambridge, Massachusetts: MIT Press.Google Scholar
  6. Chandrasekaran, B. (1985). Generic tasks in Knowledge-based reasoning: characterizing and designing expert systems at the “right” level of abstraction. In Second Conference on Artificial Intelligence Applications: The Engineering of Knowledge-Based Systems, (pp. 294–300). MiamiGoogle Scholar
  7. Clancey, W. J. (1985). Heuristic classification. Artificial Intelligence, 27, 289–350.Google Scholar
  8. Clancey, W. J. (1992). Guidon-Manage Revisited: A socio-Technical Systems Approach. In C. Frasson, G. Gauthier, & G. I. McCalla (Ed.), Intelligent Computer Systems ITS '92, (pp. 21–36). Montréal, Canada: Springer-Verlag.Google Scholar
  9. Davis, R., Shrobe, H., & Szolovits, P. (1993). What is a Knowledge Representation? AI Magazine, 14(1), 17–33.Google Scholar
  10. de Greef, P., & Breuker, J. (1991). Analysing System-User Cooperation in KADS No. KADS-II/T5.3/PP/UvA/020/2.0). University of Amsterdam.Google Scholar
  11. de Hoog, R., Martil, R., Wielinga, B., Taylor, R., Bright, C., & van de Velde, W. (1992). The Common KADS model set No. KADS-II/WP I-II/RR/UvA/018/4.0). University of Amsterdam, Lloyds Register, Touche and Co., Free University of Brussels.Google Scholar
  12. Dieng, R., & Trousse, B. (1988). 3DKAT, a dependency-driven dynamic-knowledge acquisition tool. In 3 International Symposium on Knowledge Engineering, (pp. 85–93). MadridGoogle Scholar
  13. Dreyfus, H. L., & Dreyfus, S. E. (1986). Mind over Machine. New York: The Free Press.Google Scholar
  14. Hayes-Roth, & al., e. (1983). Bulding Expert Systems. Reading, M. A.: Addison-Wesley.Google Scholar
  15. Herin-Aime, D., Dieng, R.;., & Regourd, J. P. (1991). Knowledge modelling and Expertise Transfer. In J. P. A. Editors (Ed.), Proceedings: IOS, (KMET 91), (pp. 135–148). Amsterdam: Antipolis (F) Sophia.Google Scholar
  16. Hickman, F. R., Killin, J. L., Land, L., Mulhall, T., Porter, D., & Taylor, R. M. (1989). Analysis for Knowledge-Based Systems, a Practical Guide to the KADS Methodology. London, U.K.: Ellis Horwood Limited.Google Scholar
  17. Hirscheim, R. A. (1985). Office Automation: A social and Organizational Perspective (January 1989 ed.). New York, USA: John Wiley & Sons.Google Scholar
  18. Kahn, G. S. (1987). From Application Shell to Knowledge Acquisition System. In IJCAI 1987: proceedings of the tenth International Joint Conference on Artificial Intelligence., (pp. 355–358). Los Altos: Klumer Academic Publishers.Google Scholar
  19. Knuth, E., Hannáck, L., & Radó, P. (1988). A taxonomy of conceptual foundations. Data and Knowledge (DS-2), 205–219.Google Scholar
  20. Maturana, H., & Varela, F. (1984). El árbol del conocimiento (4 ed.). Santiago de Chile: Editorial Universitaria.Google Scholar
  21. Meisels, A., Kuflick, T., & Gudes, E. (1991). Limited-resource scheduling by generalized rule-based system. Knowledge-Based Systems, 4(4), 215–224.Google Scholar
  22. Motta, E., & Eisenstadt, M. (1990). Knowledge acquistion as a process model refinement. Knowledge Acquisition, 2, 21–49.Google Scholar
  23. Muzard, J., & Strobel, M. G. (1992). Tools for Computer Assisted Knowledge Engineering: ALADIN and STATEX. In IAKE 92, (pp. 155–162). Washington DC, USA: IAKE.Google Scholar
  24. Nwana, H. S., Paton, R. C., Bench-Capon, T. J. M., & Shave, M. J. R. (1991). Facilitating the development of knowledge based systems: a critical review of acquisition tools and techniques. In Avignon 91, (pp. 487–500). Avignon: EC2.Google Scholar
  25. Owen Case, D. (1988). How do the experts do it? The use of ethnographics methods as an aid to understanding the cognitive processing and retrieval of large bodies of text. In Y. Chiaramella (Ed.), 11th International Conference on Research & Development in Information Retrieval, (pp. 127–133). Grenoble: Presses de l'Université de Grenoble.Google Scholar
  26. Polya, G. (1957). How to solve It. New York: Doubleday.Google Scholar
  27. Potter, W., & Kerschberg, L. (1988). A Unified Approach to Modeling Knowledge and Data. Data and Knowledge (DS-2), 265–291.Google Scholar
  28. Rademakers, P. (1991). Task Analysis of an Equipment Assignment Problem No. AI-Memo 91-1). Artificial Intelligence Laboratory, Vrije Universiteit Brussel.Google Scholar
  29. Rantanen, J. A. (1990). Hypermedia in knowledge acquisition and specification of user interface for KBS: An approach and a case study., 2, 259–278.Google Scholar
  30. Regnier, L., Robert, J. M., & Dalkir, K. (1992). How do knowledge engineers work? In IAKE 92, (pp. 642–660). Washington, DC, USA: IAKE.Google Scholar
  31. Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E. (1986). Schemata and Sequential Thought Processes in PDP Models. In J. L. McClelland, D. E. Rumelhart, & t. P. R. Group (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition Cambridge, Massachusetts: MIT Press.Google Scholar
  32. Schreiber, G. (1992). Applying KADS-I to the Sisyphus domain (Document No. KADS-II/WP6/TR/UvA/19/2.0). University of Amsterdam.Google Scholar
  33. Shneiderman, B. (1983). Direct Manipulation: A step beyond programming Languages. IEEE Computer, August.Google Scholar
  34. Silverman, B. G. (1990). Critiquing Human Judgement Using Knowledge-Acquisition Systems. AI Magazine, 11(3), 61–79.Google Scholar
  35. Skuce, D., Shenkang, W., & Beauvillé, Y. (1989). A Generic Knowledge Acquisition Environment for Conceptual and Ontological Analysis. In J. H. Boose & B. R. Gaines (Ed.), 4th Knowledge acquisition for knowledge-based systems workshop, (pp. 31–1; 31–20). Banff Conference Centre: SRDG Publications, University of Calgary.Google Scholar
  36. Smolensky, P. (1986). Information Processing in Dynamical Systems: Foundations of Harmony Theory. In J. L. McClelland, D. E. Rumelhart, & t. P. R. Group (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition (pp. 194–281). Cambridge, Massachusetts: MIT Press.Google Scholar
  37. St-Jacques, C., Lefebvre, B., Ivan, C., & Cousineau, D. (1990). Les logiciels d'acquisition des connaissances (Rapport de projet No. CRIM-90/12-01). CRIM.Google Scholar
  38. Steels, L. (1990). Components of expertise. AI Magazine, 11(2), 30–49.Google Scholar
  39. Vasey, P., & Westwood, D. (1990). Flex expert system toolkit version 1.2 (3 ed.). London: Logic Programming Associates.Google Scholar
  40. Wielinga, B., & Breuker, J. (1986). Models of Expertise. In B. H. Du Boulay David; Steels, Luc (Ed.), Seventh European Conference on Artificial Intelligence, II. Brighton, U.K.: North-Holland.Google Scholar
  41. Wielinga, B., Van de Velde, W., Schreiber, G., & Akkermans, H. (1992). The CommonKADS framework for Knowledge Modelling (Report No. KADS-II/T1.1/PP/UvA/35/1.0). KADS-II Consortium.Google Scholar
  42. Wielinga, B. J., Schreiber, J. A., & Breuker, J. A. (1991). KADS: A Modelling Approach to Knowledge Engineering No. KADS-II/T1.1/PP/UvA/008/2.0). University of Amsterdam.Google Scholar
  43. Winograd, T., & Flores, F. (1986). Understanding computers and cognition: a new foundation for design (4 ed.). Norwood, NJ: Ablex Publishing.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  1. 1.NOVASYS and CWARCO. MontréalCanada

Personalised recommendations