Advertisement

Brain data base (BDB)

  • G. Anogianakis
  • A. Krotopoulou
  • P. Spirakis
  • D. Terpou
  • A. Tsakalidis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 720)

Abstract

The Brain Data Base (BDB) is an innovative database that keeps (in a structural way) those anatomical and functional features of the human brain, suitable for applying the principles of biomagnetism in order to localize epileptic foci. It handles complex and non-uniform 3-D objects and admits efficient query evaluation through state-of the art computational geometry techniques. The proposed logical model of the BDB may serve as a framework for other specialized databases which deal with non-standard and involved topological information.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Talairach J., Tournoux P., “Co-Planar stereotaxic atlas of the brain”, Georg Thieme Verlag Stuttgart, New York, Thieme medical publishers, 1988.Google Scholar
  2. 2.
    Anogianakis G., Krotopoulou K., Spirakis P., Terpou D., Tsakalidis A., “The logical design of the Brain Data Base”, Technical Report MB1.2, AIM-Project, Magnobrain no A2020, September 1992.Google Scholar
  3. 3.
    Korth E., and Silberschatz A., “Database system concepts”, McGrawhill, University of Atlas at Austin, 1986.Google Scholar
  4. 4.
    Rubenstein W. B.,“A Database Design for Musical Information”, Computer Science Division, University of California, Berkley, ACM SIGMOD 1987.Google Scholar
  5. 5.
    Mehlhorn K. and Tsakalidis A. K., “Chapter 6: Data Structures”, Handbook of Theoretical Computer Science, Editor J.V.Leeuwen, Elsevier Science Publishers, co-published by MIT — Press, pp. 301–341, 1990.Google Scholar
  6. 6.
    Overmars M.H. “Efficient Data Structures for Range Searching on a Grid”, Journal of Algorithms 9, pp. 254–275, 1988.CrossRefGoogle Scholar
  7. 7.
    Bistiolas V., Sofotassios D., and Tsakalidis A., “Computing Rectangle Enclosures” Computational Geometry: Theory and Applications, 2, 1993.Google Scholar
  8. 8.
    Willard D., “New Data Structures for orthogonal range queries”, SIAM Journal on Computing, Vol. 14, pp. 232–253, 1985.CrossRefGoogle Scholar
  9. 9.
    Franzblau D.S. and Kleitman D. J., “An Algorithm for Constructing Regions with Rectangles, Independence and minimum generating Sets for Collections of Intervals” in Proc. 16th ACM Symp. Theory Comput., pp.167–174, (1984).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • G. Anogianakis
    • 1
  • A. Krotopoulou
    • 2
  • P. Spirakis
    • 2
  • D. Terpou
    • 2
  • A. Tsakalidis
    • 2
  1. 1.Faculty of MedicineUniversity of ThessalonikiGreece
  2. 2.Department of Computer Engineering and InformaticsUniversity of PatrasGreece

Personalised recommendations