Object-oriented volume segmentation

  • Dietrich W. R. Paulus
  • Matthias Wolf
Biomedical Applications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 719)


In this article we discuss three-dimensional image processing. Algorithms and data structures for this purpose are combined to form classes and objects in an object-oriented image analysis system. The major classes are volumes, octtrees, and image cubes. They provide reusable, problem-independent software components and hide implementation details. As an example, we show how data-driven volume segmentation of NMR-images can be accomplished using general assumptions about the image data. We point out how the classes can be integrated in an knowledge-based analysis system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bomans, M.; Riemer, M.; Tiede, U.; Höhne, K.: 3-D Segmentation von Kernspin-Tomogrammen. In: Mustererkennung 1987, pages 231–235. Springer, Berlin, 1987. Informatik Fachberichte (149).Google Scholar
  2. 2.
    Carlsen, I. C.; Haaks, D.: IKS(PFH) — Concept and implementation of an objectoriented framework for image processing. Computers and Graphics, 15(4):473–482, 1991.Google Scholar
  3. 3.
    Gorlen, K. E.; Orlow, S.; Plexico, P. S.: Data Abstraction and Object-Oriented Programming in C++. John Wiley and Sons, Chichester, 1990.Google Scholar
  4. 4.
    Niemann, H.; Wetzel, D.; Weierich, P.; Sagerer, G.; Glückert, K.: Methods of Artificial Intelligence in Medical Imaging. In: Proc. I.CO.GRAPHICS, pages 253–260. Mailand, 1992.Google Scholar
  5. 5.
    Paulus, D. W. R.: Objektorientierte und wissensbasierte Bildverarbeitung. Vieweg, Braunschweig, 1992.Google Scholar
  6. 6.
    Paulus, D. W. R.; Winzen, A.; Niemann, H.: Knowlege Based Object Recognition and Model Generation. In: Proceedings Europto 93, Computer Vision for Industry, München, to appear 1993. SPIE Proc. No. 1989.Google Scholar
  7. 7.
    Straster, K. C.; Gerbrands, J. J.: Three-dimensional image segmentation using a split, merge and group approach. Pattern Recognition Letters, 12:307–325, 1991.Google Scholar
  8. 8.
    Vaske, E.: Segmentation von Kernspintomogrammen mit der topologischen Karte zur 3D-Visualisierung. Technical report, Diplomarbeit, Universitätskrankenhaus Eppendorf, Hamburg, 1992. IMDM — Bericht Nr. 92/1, Februar 92.Google Scholar
  9. 9.
    Wolf, M.: Segmentierung von MR-Bildern. Technical report, Studienarbeit, Lehrstuhl für Informatik 5 (Mustererkennung), Universität Erlangen-Nürnberg, Erlangen, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Dietrich W. R. Paulus
    • 1
  • Matthias Wolf
    • 1
  1. 1.Lehrstuhl für Mustererkennung (Informatik 5)Universität Erlangen-NürnbergErlangenFR of Germany

Personalised recommendations