Advertisement

Model-based adaptive preprocessing of images in automatic visual inspection

  • Roman M. Palenichka
  • Roman T. Mysak
Industrial Applications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 719)

Abstract

A new edge detection scheme based on image structural model is described. Developed method for edge extraction allows an explicit quality control during the edge detection and is in the same time not very computationaly expensive. It is used in structure — adaptive algorithms for image binary segmentation in order to solve the problem of defect detection in microelectronics or to perform visual measurements with subpixel accuracy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chin R. T. and Harlow C.A. Automated visual inspection: A survey // IEEE Trans. Pattern Anal. Machine Intell.,vol. PAMI-4, N∘6, 1982, pp.557–573.Google Scholar
  2. 2.
    Yoda H. et al. An automatic wafer inspection system using pipelined image processing techniques //IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-10,∘1, 1988, pp.4–16.Google Scholar
  3. 3.
    Strickland R. N., Draelos T. and Mao Z. Edge detection in machine vision using a simple L1 norm template matching algorithm // Pattern Recognition, vol.23, N∘5, 1990,pp.411–440.Google Scholar
  4. 4.
    Kundu A. Robust edge detection // Pattern Recognition, vol.23, N∘5, 1989, pp.423–440.Google Scholar
  5. 5.
    Nagao M., Matsuyama T. Edge preserving smoothing // Computer Graphics and Image Processing.-1979.-vol.9, p.394–407.Google Scholar
  6. 6.
    Lee S.J. Digital image enhancement and noise filtering by use of local statistics // IEEE Trans. on Pattern Analysis and Machine Intelligence.-1980.-vol. PAMI-2, p. 165–169.Google Scholar
  7. 7.
    Perez A. and Gonzalez R.C. An iterative thresholding algorithm for image segmentation //IEEE Trans. on Pattern Analysis and Machine Intelligence.-1987.-vol.9,-p.742–751.Google Scholar
  8. 8.
    Lee S.J. and Chung S. Y. A comparative performance study of several global thresholding techniques for segmentation // Computer Vision, Graphics and Image Processing.-1990.-vol.52,-p.171–190.Google Scholar
  9. 9.
    Gritsyk V.V. and Palenichka R.M. An adaptive algorithm for image binary segmentation and edge detection // in Proc. 4th Int. Conf. Computer Analysis of Images and Patterns, Sept.,1991 pp. 152–158.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Roman M. Palenichka
    • 1
  • Roman T. Mysak
    • 1
  1. 1.Institute of Physics and Mechanics of the Ukrainian, Academy of SciencesLvivUkraine

Personalised recommendations