Advertisement

Non interleaving process algebra

  • J. C. M. Baeten
  • J. A. Bergstra
Invited Talk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 715)

Abstract

We study a non interleaving subalgebra of a reduct of a model of ACP. The model discussed uses step bisimulation semantics. We can derive identities in this model with the help of the (interleaving) ACP calculus with multi-actions. We study the connection with Petri nets, and introduce causalities and a causal state operator.

1980 Mathematics Subject Classification (1985 revision)

68Q45 68Q55 68Q65 68Q50 

1987 CR Categories

F.4.3 D.2.10 D.3.1 D.3.3 

Key words & Phrases

process algebra interleaving non-interleaving true concurrency Petri net ACP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BB88]
    J.C.M. Baeten & J.A. Bergstra, Global renaming operators in concrete process algebra, Inf. & Comp. 78 (3), 1988, pp. 205–245.Google Scholar
  2. [BB91]
    J.C.M. Baeten & J.A. Bergstra, Real time process algebra, in Formal Aspects of Computing 3 (2), 1991, pp. 142–188.CrossRefGoogle Scholar
  3. [BW90]
    J.C.M. Baeten & W.P. Weijland, Process algebra, Cambridge Tracts in TCS 18, Cambridge University Press 1990.Google Scholar
  4. [BK84]
    J.A. Bergstra & J.W. Klop, Process algebra for synchronous communication, Inf. & Control 60, 1984, pp. 109–137.Google Scholar
  5. [BK86]
    J.A. Bergstra & J.W. Klop, Verification of an alternating bit protocol by means of process algebra, in: Math. Methods ov Spec. and Synthesis of Software Systems '85 (W. Bibel & K.P. Jantke, eds.), Springer LNCS 215, 1986, pp. 9–23.Google Scholar
  6. [BKT85]
    J.A. Bergstra, J.W. Klop & J.V. Tucker, Process algebra with asynchronous communication mechanisms, in Proc. Seminar on Concurrency (S.D. Brookes, A.W. Roscoe & G. Winskel, eds.), Springer LNCS 197, 1985, pp. 76–95.Google Scholar
  7. [BDH92]
    E. Best, R. Devillers & J.G. Hall, The Petri box calculus: a new causal algebra with multilabel communication, in: Advances in Petri Nets 92 (G. Rozenberg, ed.), Springer LNCS 609, 1992, pp. 21–69.Google Scholar
  8. [CH89]
    I. Castellani & M. Hennessy, Distributed bisimulations, JACM 10, 1989, pp. 887–911.CrossRefMathSciNetGoogle Scholar
  9. [GV87]
    R.J. van Glabbeek & F.W. Vaandrager, Petri net models for algebraic theories of concurrency, in: Proc. PARLE, Eindhoven (J.W. de Bakker, A.J. Nijman & P.C. Treleaven, eds.), Springer LNCS 259, 1987, pp. 224–242.Google Scholar
  10. [GOL88]
    U. Goltz, On representing CCS programs by finite Petri nets, in Proc. MFCS 88, Springer LNCS 324, 1988, pp. 339–350.Google Scholar
  11. [JPZ91]
    W. Janssen, M. Poel & J. Zwiers, Action systems and action refinement in the development of parallel systems, in: Proc. CONCUR'91 (J.C.M. Baeten & J.F. Groote, eds.), Springer LNCS 527, 1991, pp. 298–316.Google Scholar
  12. [Kie89]
    A. Kiehn, Distributed bisimulations for finite CCS, report 7/89, University of Sussex 1989.Google Scholar
  13. [MIL93]
    R. Milner, Elements of interaction (Turing Award lecture), Comm. of the ACM 36 (1), 1993, pp. 78–89.CrossRefGoogle Scholar
  14. [MM93]
    R. Milner & F. Moller, Unique decomposition of processes, Theor. Comp. Sci. 107 (2), 1993, pp. 357–363.Google Scholar
  15. [NT84]
    M. Nielsen & P.S. Thigarajan, Degrees of non-determinism and concurrency: a Petri net view, in: Proc. 5th FST&TCS (M. Joseph & R. Shyamasundar, eds.), Springer LNCS 181, 1984, pp. 89–118.Google Scholar
  16. [PET80]
    C. Petri, Introduction to general net theory, in: Net Theory and Applications (W. Brauer, ed.), Springer LNCS 84, 1980, pp. 1–19.Google Scholar
  17. [POM86]
    L. Pomello, Some equivalence notions for concurrent systems. An overview, in: Advances in Petri Nets 1985 (G. Rozenberg, ed.), Springer LNCS 222, 1986, pp. 381–400.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • J. C. M. Baeten
    • 1
  • J. A. Bergstra
    • 2
    • 3
  1. 1.Department of Mathematics and Computing ScienceEindhoven University of TechnologyMB EindhovenThe Netherlands
  2. 2.Programming Research GroupUniversity of AmsterdamDB AmsterdamThe Netherlands
  3. 3.Department of PhilosophyUtrecht UniversityCS UtrechtThe Netherlands

Personalised recommendations