Advertisement

Verifying properties of module construction in type theory

  • Bernhard Reus
  • Thomas Streicher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 711)

Abstract

This paper presents a comparison between algebraic specifications-in-the-large and a type theoretical formulation of modular specifications, called deliverables. It is shown that the laws of module algebra can be translated to laws about deliverables which can be proved correct in type theory. The adequacy of the Extended Calculus of Constructions as a possible implementation of type theory is discussed and it is explained how the reformulation of the laws is influenced by this choice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bergstra et al. 89]
    J. A. Bergstra, J. Heering, P. Klint: Algebraic Specification. ACM Press, New York, 1989.Google Scholar
  2. [Burstall, Goguen 80]
    R.M. Burstall, J.A. Goguen: The semantics of Clear, a specification language. In: Proc. Advanced Course on Abstract Software Specification. LNCS 86, Springer, Berlin, 1980.Google Scholar
  3. [Burstall, McKinna 92]
    R.M. Burstall, J. McKinna: Deliverables: a categorical approach to program development in type theory. ECS-LFCS-92-242, Dept. of Computer Science, Edinburgh University, 1992.Google Scholar
  4. [McKinna 92]
    J. McKinna: Deliverables: a categorical approach to program development in type theory. Ph.D. Thesis, University of Edinburgh, 1992. Also appeared as ECS-LFCS-92-247, Dept. of Computer Science, Edinburgh University, 1992.Google Scholar
  5. [Leszczylowski, Wirsing 91]
    J. Leszczylowski, M. Wirsing: Polymorphism, Parameterisation and Typing: An Algebraic Specification Perspective. In: Proc. of the 8th STACS, LNCS 480, Springer, Berlin, p. 1–15.Google Scholar
  6. [Luo 89]
    Z. Luo: ECC, an Extended Calculus of Constructions. In: Proc. of the Fourth Ann. Symp. on Logic in Computer Science (LICS), IEEE, 1989, p. 385–395.Google Scholar
  7. [Luo 91]
    Z. Luo: Program specification and data refinement in type theory. In: Proc. of the Fourth Intern. Conf. on the Theory and Practice of Software Development (TAPSOFT), LNCS 493, Springer, Berlin, 1991, p. 143–168.Google Scholar
  8. [Luo 92]
    Z. Luo: private communication.Google Scholar
  9. [Luo et al. 92]
    Z. Luo, R. Pollack: LEGO Proof Development System: Users' Manual. ECS-LFCS-92-211, Dept. of Computer Science, Edinburgh University, 1992.Google Scholar
  10. [Nordström et al. 90]
    B. Norström, K. Petersson, J.M. Smith: Programming in Martin Löf's Type Theory. Oxford University Press, Oxford, 1990.Google Scholar
  11. [Streicher 88]
    T. Streicher: Semantics of Type Theory — Correctness, Completeness and Independence Results. Birkhäuser, Boston, 1991.Google Scholar
  12. [Streicher, Wirsing 90]
    T. Streicher, M. Wirsing: Dependent types considered necessary for algebraic specification languages. In: Recent Trends in Data Type Specification, Proc. 7th International Workshop on Specification of Abstract Data Types. LNCS 534, Springer, Berlin, 1990, p. 323–340.Google Scholar
  13. [Wirsing 86]
    M. Wirsing: Structured algebraic specifications: a kernel language. Theoretical Computer Science 42, 1986, p. 123–249.Google Scholar
  14. [Wirsing 89]
    M. Wirsing: Algebraic Specification in J.V. Leeuwen (ed.): Handbook of Theoretical Computer Science, Volume B, Elsevier, Amsterdam, 1990, p. 675–788.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Bernhard Reus
    • 1
  • Thomas Streicher
    • 1
  1. 1.Institut für InformatikUniversität MünchenMünchen 40Germany

Personalised recommendations