Advertisement

Constant time reductions in λ-calculus

  • Michel Parigot
  • Paul Rozière
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 711)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba81]
    H. Barendregt, The Lambda-Calculus, North-Holland, 1981.Google Scholar
  2. [Co89]
    L. Colson, About primitive recursive algorithms, Proc. ICALP'89, Springer Lecture Notes in Computer Science, Vol. 372, pp 194–206.Google Scholar
  3. [Gi72]
    J.Y. Girard, Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur, Thèse d'état, Université Paris 7,1972.Google Scholar
  4. [Kr87]
    J.L. Krivine, Un algorithme non typable dans le système F, CRAS 304 Série I (1987), pp 123–126.Google Scholar
  5. [Kr90]
    J.L. Krivine, Lambda-calcul types et modèles, Masson (1990).Google Scholar
  6. [Pa89]
    M. Parigot, On the representation of data in lambda-calculus, Proc. CSL'89, Kaiserslautern, Springer Lecture Notes in Computer Science, Vol. 440, pp 309–321.Google Scholar
  7. [Pa90]
    M. Parigot, Internal Labellings in Lambdaalculus, Proc. MFCS 1990, Banská Bystrica, Springer Lecture Notes in Computer Science, Vol. 452, pp 439–445.Google Scholar
  8. [Pa92]
    M. Parigot, Recursive programming with proofs, Proc. Coll.“ Mathématique et Informatique”, Marseille 1989, Theoretical Computer Science, Vol. 94, pp 335–356.Google Scholar
  9. [Ro89]
    P. Rozière, Un réultat de non typabilité dans le système F ω, CRAS 309 Série I (1989), pp 779–802.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Michel Parigot
    • 1
  • Paul Rozière
    • 1
  1. 1.Equipe de logique - CNRS UA 753 45–55 5ème étageUniversité Paris 7Paris Cedex 05France

Personalised recommendations