Advertisement

The boundary of substitution systems

  • Philippe Narbel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 711)

Abstract

The global limit set has been introduced in a preceding work as a generalization of the way of generating infinite words by substitution systems, i.e. by iterating a morphism on a finite alphabet. We prove here that the boundary set (the “adherence set”) of a progressive substitution language is equal to its global limit set plus a simple set of words. This allows us to exhibit conditions to conclude that the full boundary is explicitly constructible, rationally codable and uncountable. The equivalence problem for boundaries is also shown decidable for iterated primitive morphisms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bea86]
    Beauquier (D.).-Automates de mots bi-infinis.-Paris, 1986. Thèse d'Etat.Google Scholar
  2. [BN80]
    Boasson (L.) and Nivat (N.)-Adherence of languages. J. Comp. Syst. Sc., vol. 20, 1980, pp. 285–309.Google Scholar
  3. [CIH84]
    Culik II (K.) and Harju (T.).-The ω-sequence equivalence problem for DOL systems is decidable. Journal of the ACM, vol. 31, number 2, april 1984, pp. 282–298.Google Scholar
  4. [CIS82]
    Culik II (K.) and Salomaa (A.).-On infinite words obtained by iterating morphisms. Theoretical Computer Science, vol. 19, 1982, pp. 29–38.Google Scholar
  5. [CK71]
    Coven (E.M.) and Keane (M.S.).-The structure of substitution minimal sets. Transactions of the American Mathematical Society, vol. 162, 1971, pp. 89–102.Google Scholar
  6. [Con90]
    Connes (A.).-Géométrie non Commutative.-Interéditions, 1990.Google Scholar
  7. [DB89]
    De Bruijn (N.G.).-Updown generation of Beatty sequences. Indag. Math., vol. 51, 1989, pp. 385–407.Google Scholar
  8. [DL91]
    Devolder (J.) and Litovsky (I.).-Finitely generated biω-languages. Theoretical Computer Science, vol. 85, 1991, pp. 33–52.Google Scholar
  9. [Eng89]
    Engelking (R.).-General Topology.-Heldermann Verlag Berlin, 1989.Google Scholar
  10. [GN91]
    Gire (F.) and Nivat (N.).-Langages algébriques de mots bi-infinis. Theoretical Computer Science, vol. 86, 1991, pp. 277–323.Google Scholar
  11. [Got63]
    Gottschalk (W.H.).-Substitution minimal sets. Transactions of the American Mathematical Society, vol. 109, 1963, pp. 467–491.Google Scholar
  12. [GS87]
    Grunbaum (B.) and Shephard (G.C.).-Tilings and Patterns.-Freeman and CO., 1987.Google Scholar
  13. [Hea84a]
    Head (T.).-Adherences of DOL languages. Theoretical Computer Science, vol. 31, 1984, pp. 139–149.Google Scholar
  14. [Hea84b]
    Head (T.).-The adherences of languages as topological spaces. In: Automata on infinite words. pp. 147–163.-Springer Verlag. Lecture Notes in Comp. Sci. vol. 192.Google Scholar
  15. [MH38]
    Morse (M.) and Hedlund (G.A.).-Symbolic dynamics. American Journal of Mathematics, vol. 60, 1938, pp. 815–866.Google Scholar
  16. [Mos90]
    Mossé (B.).-Puissances de mots et reconnaissabilité des points fixes d'une substitution.-Technical report, PRC Math. Info., Université Aix-Marseille, 1990.Google Scholar
  17. [Nar93]
    Narbel (P.).-The limit set of recognizable substitution systems. In: STACS'93. pp. 226–236.-Springer Verlag. Lecture Notes in Comp. Sci., 657.Google Scholar
  18. [NP82]
    Nivat (N.) and Perrin (D.).-Ensembles reconnaissables de mots bi-infinis. In: 14th ACM Symp. on Theory of Computing, pp. 47–59.Google Scholar
  19. [Que87]
    Queffelec (M.).-Substitution Dynamical Systems — Spectral Analysis.-Springer-Verlag, 1987, Lecture Notes in Mathematics, volume 1294.Google Scholar
  20. [RS80]
    Rozenberg (G.) and Salomaa (A.).-The mathematical theory of L systems.-Academic press, 1980.Google Scholar
  21. [Sal81]
    Salomaa (A.).-Jewels of Formal Language Theory.-Rockville, MD, Computer Science Press, 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Philippe Narbel
    • 1
  1. 1.Institut Blaise Pascal, Paris 7L.I.T.PParis

Personalised recommendations