Advertisement

A hierarchy of deterministic top-down tree transformations

  • Giora Slutzki
  • Sándor Vágvölgyi
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 710)

Abstract

The class DTT DR (respectively, DTT) is the family of all deterministic top-down tree transductions with deterministic top-down look-ahead (respectively, no look-ahead). In this paper we prove that the two hierarchies: (DTT DR ) n and (DTT DR ) n o DTT are proper and that they “shuffle perfectly” in the sense that (DTT DR ) n o DTT is properly contained in (DTT DR )n*1, for all n ≥ 0. Using these results we show that the problem of determining the correct inclusion relationship between two arbitrary compositions of tree transformation classes from the set M= {DTA, DTT, DTT DR , DTT R } can be decided in linear time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. V. Book, Confluent and other types of Thue systems, J. Assoc. Comput. Mach. 29 (1982) 171–182.Google Scholar
  2. 2.
    R. V. Book, Thue systems and the Church-Rosser property: replacement systems, specification of formal languages and presentations of monoids, L. Cummings (ed.) Progress in combinatorics on words 1–38, Academic Press, 1983, New York.Google Scholar
  3. 3.
    V. Book and P. O'Dunlaing, Testing for the Church-Rosser property, Theoret. Comput. Sci. 16 (1981) 223–229.CrossRefGoogle Scholar
  4. 4.
    J. Engelfriet, Bottom-up and top-down tree transformations — a comparison, Mathematical Systems Theory 9 (1975) 198–231.CrossRefGoogle Scholar
  5. 5.
    J. Engelfriet, Top-down tree transducers with regular look-ahead, Mathematical Systems Theory, 10 (1976/1977) 289–303.Google Scholar
  6. 6.
    J. Engelfriet and H. Vogler, Macro tree transducers, J. Comput. System Sci. 31 (1985) 71–146.CrossRefGoogle Scholar
  7. 7.
    J. Engelfriet and H. Vogler, Pushdown machines for the macro tree transducer, Theoret. Comput. Sci. 42 (1986) 251–368.CrossRefGoogle Scholar
  8. 8.
    J. Engelfriet and H. Vogler, High level tree transducers and iterated pushdown transducers, Acta Inform. 26 (1988) 131–192.Google Scholar
  9. 9.
    Z. Fülöp and S. Vágvölgyi, Top-down tree transducers with determinstic top-down look-ahead, Inform. Process. Lett. 33 (1989/90) 3–5.CrossRefGoogle Scholar
  10. 10.
    Z. Fülöp and S. Vágvölgyi, Variants of top-down tree transducers with look-ahead, Mathematical Systems Theory 21 (1989) 125–145.Google Scholar
  11. 11.
    Z. Fülöp and S. Vágvölgyi, Iterated deterministic top-down look-ahead, Fundamentals of Computation Theory International Conference FCT'89 Lecture Notes in Computer Science 380 (1989) 175–184.Google Scholar
  12. 12.
    Z. Fülöp and S. Vágvölgyi, Decidability of the inclusion in monoids generated by tree transformation classes, M. Nivat and A. Podelski (eds.) Tree automata and Languages 1992, Elsevier Science Publishers B.V. 381–408.Google Scholar
  13. 13.
    F. Gécseg and M. Steinby, Tree automata, Akadémiai Kiadó, 1984, Budapest.Google Scholar
  14. 14.
    M. Jantzen, Confluent string rewriting, Springer-Verlag, 1988, Berlin-Heidelberg-New York.Google Scholar
  15. 15.
    W. C. Rounds, Mappings and grammars on trees, Math. Systems Theory 4 (1970) 257–287.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Giora Slutzki
    • 1
  • Sándor Vágvölgyi
    • 1
  1. 1.Department of Computer ScienceIowa State UniversityAmesUSA

Personalised recommendations