Advertisement

Non erasing Taring machines: a frontier between a decidable halting problem and Universality

  • Maurice Margenstern
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 710)

Abstract

A new criterion, namely the number of colours used by the instructions of a Turing machine program, is proposed to settle the frontier between a decidable halting problem and universality for Turing machines. The efficiency of this criterion has been proved by Pavlotskaïa, [3, 4], for deterministic Turing machines on alphabet {0,1}. It is used here in the case of non-erasing Turing machines on the same alphabet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Margenstern M. Sur la frontière entre machines de Turing à arrêt décidable et machines de Turing universelles. LITP research report N∘92.83 (Institut Blaise Pascal) (1992)Google Scholar
  2. 2.
    Minsky M.L. Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, N.J. (1967)Google Scholar
  3. 3.
    Павлоцкая Л.М. Разрешимость проблемы остановки для некоторых0 классов машин Тюринга. Математические Заметки, 13, (6), 899–909, Июнь 1973 899–909. (transl. Solvability of the halting problem for certain classes of Turing machines, Notes of the Acad. Sci. USSR, 13 (6) Nov.1973, 537–541)Google Scholar
  4. 4.
    Павлоцкая Л.М. qO минимальном числе различных кодов вершин в графе универсальной машины Тюринга. Дискретный анализ, Сборник трудов института математики CO AH CCCP 27, 52–60, 1975 (On the minimal number of distinct codes for summits in the graph of a universal Turing machine) (in Russian)Google Scholar
  5. 5.
    Рогожин Ю.В. Семь универсальных машин Тюринга. Математические Исследования, 69, 76–90, 1982 (Seven universal Turing machines) (in Russian)Google Scholar
  6. 6.
    Shepherdson J. C. The reduction of two-way automata to one-way automata. I.B.M. journal, 3, 198–200, 1959. (reedited in Sequential machines: selected papers, ed. by E.F. Moore, Addison-Wesley, 1964)Google Scholar
  7. 7.
    Зыкин Г.П. Замечание об одной теореме Хао Вана. Алгебра и Логика, 2 (1), 33–35, 1963 (Remark on a theorem of Hao Wang) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Maurice Margenstern
    • 1
  1. 1.Institut Blaise PascalUniversité Paris-Sud and LITPFrance

Personalised recommendations