Advertisement

Monotonically labelled ordered trees and multidimensional binary trees

  • Rainer Kemp
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 710)

Abstract

The classical one-to-one correspondence between (unlabelled) ordered trees with n nodes and (unlabelled) extended binary trees with (2n−1) nodes is generalized to monotonically labelled ordered trees and multidimensional extended binary trees.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.G. De Bruijn, B.J.M. Morselt: A note on plane trees. J. Combin. Theory 2, 27–34 (1967)Google Scholar
  2. 2.
    Ph. Flajolet, J.C. Raoult, J. Vuillemin: The number of registers required for evaluating arithmetic expressions. Theoret. Comput. Sci. 9, 99–125 (1979)CrossRefGoogle Scholar
  3. 3.
    Ph. Flajolet: Analyse d'Algorithmes de Manipulation d'arbres et de fichiers. Cahiers du BURO 34–35, 1–209 (1981)Google Scholar
  4. 4.
    J. Françon: Sur le nombre de registres nécessaires à l'évaluation d'une expression arithmétique. RAIRO Inform. Théor. 18, 355–364 (1984)Google Scholar
  5. 5.
    F. Harary, G. Prins, W.T. Tutte: The number of plane trees. Indag. Math. 26, 319–239 (1964)Google Scholar
  6. 6.
    R. Kemp: The average number of registers needed to evaluate a binary tree optimally. Acta Inform. 11, 363–372 (1979)CrossRefGoogle Scholar
  7. 7.
    R. Kemp: The reduction of binary trees by means of an input-restricted deque. RAIRO Inform. Théor. 17, 249–284 (1983)Google Scholar
  8. 8.
    R. Kemp: A one-to-one correspondence between two classes of ordered trees. Inform. Process. Letters 32, 229–234 (1989)CrossRefGoogle Scholar
  9. 9.
    R. Kemp: Binary search trees for d-dimensional keys. J. Inf. Process. Cybern. EIK 25 (10), 513–527 (1989)Google Scholar
  10. 10.
    R. Kemp: On the number of deepest nodes in ordered trees. Discrete Math. 81, 247–258 (1990)CrossRefGoogle Scholar
  11. 11.
    R. Kemp: Random multidimensional binary trees. J. Inf. Process. Cybern. EIK 29, 9–36 (1993)Google Scholar
  12. 12.
    D.E. Knuth: The Art of Computer Programming, Vol. 1, 2nd ed., Addison-Wesley, Reading, MA, (1977)Google Scholar
  13. 13.
    W. Kuich: Languages and the enumeration of planted plane trees. Koninkl. Nederl. Akademie van Wetenschappen, Proceedings Series A, 73 (4), 268–280 (1970)Google Scholar
  14. 14.
    H. Prodinger, F.J. Urbanek: On monotone functions of tree stuctures. Discrete Applied Math. 5, 223–239 (1983)CrossRefGoogle Scholar
  15. 15.
    V. Strehl: Two short proofs of Kemp's identity for rooted plane trees. Europ. J. Combin. 5, 373–376 (1984)Google Scholar
  16. 16.
    S. Zaks: Lexicographic generation of ordered trees. Theoret. Comput. Sci. 10, 63–82 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Rainer Kemp
    • 1
  1. 1.Fachbereich InformatikJohann Wolfgang Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations