A plane-sweep algorithm for the all-nearest-neighbors problem for a set of convex planar objects

  • Thorsten Graf
  • Klaus Hinrichs
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 709)


We present a plane-sweep algorithm that solves the all — nearest — neighbors problem with respect to an arbitrary Minkowski-metric dt (1 ≤ t ≤ ∞) for a set of non-intersecting planar compact convex objects, such as points, line segments, circular arcs and convex polygons. The algorithm also applies if we replace the condition of disjointness by the weaker condition that the objects in the configuration are diagonal-disjoint. For configurations of points, line segments or disks the algorithm runs in asymptotically optimal tune O(n log n). For a configuration of n convex polygons with a total of N edges it finds nearest neighbors with respect to the Euclidean L2-metric in time O(n log N) if each polygon is given by its vertices in cyclic order.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Bartling, Th. Graf, K. Hinrichs: A plane sweep algorithm for finding a closest pair among convex planar objects, Preprints Angewandte Mathematik und Informatik, Universität Münster, Bericht Nr. 1/93-1.Google Scholar
  2. 2.
    F. Bartling, K. Hinrichs: A plane-sweep algorithm for finding a closest pair among convex planar objects, A. Finkel, M. Jantzen (eds.), STACS 92, 9th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 577, 221–232, Springer-Verlag, Berlin, 1992.Google Scholar
  3. 3.
    J.L. Bentley and T. Ottmann, Algorithms for reporting and counting intersections, IEEE Transactions on Computers C28, 643–647 (1979).Google Scholar
  4. 4.
    B. Chazelle, D. P. Dobkin: Intersection of convex objects in two and three dimensions, Journal of the ACM, 34(1), 1–27 (1987).CrossRefGoogle Scholar
  5. 5.
    F. Chin, C. A. Wang: Optimal algorithms for the intersection and the minimum distance problems between planar polygons, IEEE Trans. Comput. 32(12), 1203–1207 (1983).Google Scholar
  6. 6.
    H. Edelsbrunner: Computing the extreme distances between two convex polygons, Journal of Algorithms 6, 213–224 (1985).CrossRefGoogle Scholar
  7. 7.
    S. Fortune: A sweepline algorithm for Voronoi diagrams, Algorithmica 2, 153–174 (1987).CrossRefGoogle Scholar
  8. 8.
    P.-O. Fjällström. J.Katajainen, J. Petersson: Algorithms for the all-nearest-neighbors problem, Report 92/2, Dept. of Computer Science, University of Copenhagen, Denmark, 1992.Google Scholar
  9. 9.
    K.Hinrichs, J.Nievergelt, P.Schorn: An all-round algorithm for 2-dimensional nearest-neighbor problems, Acta Informatics, 29(4), 383–394 (1992).Google Scholar
  10. 10.
    P. Schorn: Robust algorithms in a program library for geometric computation, PhD Dissertation No. 9519, ETH Zürich, Switzerland, 1991Google Scholar
  11. 11.
    M.Shamos, D.Hoey: Closest-point problems, Proceedings of the 16th Annual IEEE Symposium on Foundations of Computer Science, 151–162 (1975).Google Scholar
  12. 12.
    P.Vaidya: An O(n log n) algorithm for the all-nearest-neighbours-problem, Discrete & Computational Geometry, 4, 101–115 (1989).Google Scholar
  13. 13.
    C.K. Yap: An O(n log n) algorithm for the Voronoi diagram of a set of simple curve segments, Discrete Comput. Geometry 2, 365–393 (1987).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Thorsten Graf
    • 1
  • Klaus Hinrichs
    • 1
  1. 1.Institut für numerische und instrumentelle Mathematik-INFORMATIKWestfälische Wilhelms-Universität MünsterMünster

Personalised recommendations