Skip to main content

Computing the smallest k-enclosing circle and related problems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 709))

Abstract

We present an efficient algorithm for solving the “smallest k-enclosing circle” (kSC) problem: Given a set of n points in the plane and an integer k ≤ n, find the smallest disk containing k of the points. We resent several algorithms that run in O(nk logc n) time, where the constant c depends on the storage that the algorithm is allowed. When using O(nk) storage, the problem can be solved in time O(nk log2 n). When only O(n log n) storage is allowed, the running time is O(nk log2 n log n/k.). The method we describe can be easily extended to obtain efficient solutions of several related problems (with similar time and storage bounds). These related problems include: finding the smallest homothetic copy of a given convex polygon P, which contains k points from a given planar set, and finding the smallest hypodrome of a given length and orientation (formally defined in Section 4) containing k points from a given planar set.

Work on this paper by the second author has been supported by NSF Grant CCR-91-22103, and by grants from the U.S.-Israeli Binational Science Foundation, the G.I.F., the German-Israeli Foundation for Scientific Research and Development, and the Fund for Basic Research administered by the Israeli Academy of Sciences.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Agarwal, M. Sharir, and S. Toledo. New applications of parametric searching in computational geometry, to appear in J. Algorithms, 1993.

    Google Scholar 

  2. P. K. Agarwal and J. Matoušek. Dynamic half-space range reporting and its applications, manuscript, 1992.

    Google Scholar 

  3. A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Finding k points with minimum diameter and related problems. In Proc. 5th Annu. ACM Sympos. Comput. Geom., pages 283–291, 1989.

    Google Scholar 

  4. M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c log n parallel steps. Combinatorica, 3:1–19, 1983.

    Google Scholar 

  5. L. P. Chew and K. Kedem. Improvements on geometric pattern matching problems. In Proc. 3rd Scand. Workshop Algorithm Theory, volume 621 of Lecture Notes in Computer Science, pages 318–325. Springer-Verlag, 1992.

    Google Scholar 

  6. R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM 31:200–208, 1984.

    Google Scholar 

  7. H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision. SIAM J. Comput., 15:317–340, 1986.

    Article  Google Scholar 

  8. D. Eppstein. New algorithms for minimum area k-gons. In Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms, pages 83–88, 1992.

    Google Scholar 

  9. T. C. Kao and D. M. Mount. An algorithm for computing compacted Voronoi diagrams defined by convex distance functions. In Proc. 3rd Canad. Conf. Comput. Geom., pages 104–109, 1991.

    Google Scholar 

  10. K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete Comput. Geom., 1:59–71, 1986.

    Google Scholar 

  11. H.-P. Lenhof and M. Smid. Enumerating the k closest pairs optimally. In Proc. 33rd Annu. IEEE Sympos. Found. Comput. Sci., pages 380–386, 1992.

    Google Scholar 

  12. D. Leven and M. Sharir. Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams. Discrete Comput. Geom., 2:9–31, 1987.

    Google Scholar 

  13. N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. ACM, 30:852–865, 1983.

    Article  Google Scholar 

  14. N. Megiddo. Linear-time algorithms for linear programming in R 3 and related problems. SIAM J. Comput., 12:759–776, 1983.

    Article  Google Scholar 

  15. F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduction. Springer-Verlag, New York, NY, 1985.

    Google Scholar 

  16. R. Seidel. A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Comput. Geom. Theory Appl., 1:51–64, 1991.

    Google Scholar 

  17. M. Sharir. On k-sets in arrangements of curves and surfaces. Discrete Comput. Geom., 6:593–613, 1991.

    Google Scholar 

  18. C. K. Yap. An O(n log n) algorithm for the Voronoi diagram of a set of simple curve segments. Discrete Comput. Geom., 2:365–393, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Nicola Santoro Sue Whitesides

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Efrat, A., Sharir, M., Ziv, A. (1993). Computing the smallest k-enclosing circle and related problems. In: Dehne, F., Sack, JR., Santoro, N., Whitesides, S. (eds) Algorithms and Data Structures. WADS 1993. Lecture Notes in Computer Science, vol 709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57155-8_259

Download citation

  • DOI: https://doi.org/10.1007/3-540-57155-8_259

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57155-1

  • Online ISBN: 978-3-540-47918-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics