Deferred-query—An efficient approach for problems on interval and circular-arc graphs

Extended abstract
  • Maw-Shang Chang
  • Sheng-Lung Peng
  • Jenn-Liang Liaw
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 709)


An efficient approach, called deferred-query, is proposed in this paper to design O(n) algorithms for the domatic partition, optimal path cover, Hamiltonian path, Hamiltonian circuit and matching problems on a set of sorted intervals. Using above results, the optimal path cover, hamiltonian path and hamiltonian circuit problems can also be solved in O(n) time on a set of sorted arcs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AR]
    S. Rao Arikati and C. Pandu Rangan, Linear algorithm for optimal path cover problem on interval graphs, Inform. Process. Lett. 35 (1990), 149–153.Google Scholar
  2. [B1]
    A. A. Bertossi, On the domatic number of interval graphs, Inform. Process. Lett. 28 (1988) 275–280.Google Scholar
  3. [B2]
    A. A. Bertossi, The edge Hamiltonian path problem is NP-complete, Inform. Process. Lett. 13 (1981) 157–159.CrossRefGoogle Scholar
  4. [BB1]
    A. A. Bertossi and M. A. Bonuccelli, Hamiltonian Circuits in Interval Graph Generalizations, Information Process. Lett. 23 (1986) 195–200.Google Scholar
  5. [BB2]
    M. A. Bonuccelli and D. P. Bovet, Minimum Node Disjoint Path Covering for Circular-Arc Graphs, Information Process. Lett. 8 (1979) 159–161.CrossRefGoogle Scholar
  6. [BL]
    K. S. Booth and G. S. Leuker, Testing for consecutive ones property, interval graphs and graph planarity using PQ-tree algorithms, J. Comput. system Sci. 13 (1976), 335–379.Google Scholar
  7. [C]
    M. S Chang, O(n) Algorithms for the Hamiltonian Cycle and Node Disjoint Path Cover Problems on Circular-Arc Graphs, Preprint.Google Scholar
  8. [CH]
    E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977), 247–261.Google Scholar
  9. [CPL]
    M. S. Chang, S. L. Peng and J. L. Liaw, Deferred-Query, An Efficient Approach for Some Problems on Interval Graphs, Preprint.Google Scholar
  10. [F]
    M. Farber, Domination, independent domination, and duality in strongly chordal graphs, Disc. Appl. Math. 7 (1984), 115–130.CrossRefGoogle Scholar
  11. [GT]
    H. N. Gabow and R. E. Tarjan, A linear-time algorithm for a special case of disjoint set union, J. Comput. System Sci. 30 (1985), 209–221.CrossRefGoogle Scholar
  12. [GJ]
    M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, San Francisco, CA, 1979.Google Scholar
  13. [GJT]
    M. R. Garey, D. S. Johnson and R. E. Tarjan, The planar Hamiltonian circuit problem is NP-complete, SIAM J. Comput. 5 (1976), 704–714.CrossRefGoogle Scholar
  14. [G]
    M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.Google Scholar
  15. [GP]
    M. C. Golumbic and P. L. Hammer, Stability in Circular-Arc Graphs, J. of Algorithms 9 (1988) 314–320.Google Scholar
  16. [HSC]
    W. L. Hsu, W. K. Shih and T. C. Chern, An O(n 2logn) Time Algorithm for the Hamiltonian Cycle Problem, SIAM J. on Compt. Google Scholar
  17. [HT]
    W. L. Hsu and K. H. Tsai, Linear Time Algorithms on Circular-Arc Graphs, Information Process. Lett. 40 (1991) 123–129.Google Scholar
  18. [J]
    D. S. Johnson, The NP-Complete Column: an Ongoing Guide, J. of Algorithms 6 (1985) 434–451.Google Scholar
  19. [K1]
    J. M. Keil, Finding Hamiltonian Circuits in Interval Graphs, Inform. Process. Lett. 20 (1985), 201–206.Google Scholar
  20. [K2]
    M. S. Krishnamoorthy, An NP-hard problem in a bipartite graphs, SIGACT News 7 (1), (1976) 26.Google Scholar
  21. [LHC]
    T. L. Lu, P. H. Ho and G.J. Chang, The domatic number problem in interval graphs, SIAM J. Disc. Math. 3. (1990), 531–536.Google Scholar
  22. [MM]
    G. K. Manacher and T. A. Mankus, Determining the domatic number and a domatic partition of an interval graph in time O(n) given its sorted model, Technique report, Submitted to SIAM J. Disc. Math. 1991.Google Scholar
  23. [MMS]
    G. K. Manacher, T. A. Mankus and C. J. Smith, An Optimum O(nlogn) Algorithm for Finding a Canonical Hamiltonian Path and a Canonical Hamiltonian circuit in a set of intervals, Inform. Process. Lett. 35 (1990), 205–211.MathSciNetGoogle Scholar
  24. [MN]
    S. Masuda and K. Nakajima, An Optimal Algorithm for Finding a Maximum Independent Set of a Circular-Arc Graph, SIAM J. Comput. 17 (1988) 41–52.CrossRefGoogle Scholar
  25. [MJ]
    A. Moitra and R. C. Johnson, A parallel algorithm for maximum matching on interval graphs, 1989 International Conference on Parallel Processing, III 114–120.Google Scholar
  26. [PC]
    S. L. Peng and M. S. Chang, A new approach for domatic number problem on interval graphs, Proceedings of National Computer Symposium 1991 R.O.C., 236–241.Google Scholar
  27. [R]
    F. S. Roberts, Graph theory and its Applications to problems of society, SIAM, Philadelphia, PA, 1978.Google Scholar
  28. [RR]
    A. Srinivasa Rao and C. Pandu Rangan, Linear algorithm for domatic number problem on interval graphs, Inform. Process. Lett. 33 (1989), 29–33.Google Scholar
  29. [T]
    A. Tucker, An Efficient Test for Circular-Arc Graphs, SIAM J. Comput. 9 (1980) 1–24.CrossRefGoogle Scholar
  30. [V]
    P. Van Emde Boas, Preserving order in a forest in less than logarithmic time and linear space, Inform. Process. Lett. 6 (1977), 80–82.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Maw-Shang Chang
    • 1
  • Sheng-Lung Peng
    • 1
  • Jenn-Liang Liaw
    • 1
  1. 1.Department of Computer Science and Information EngineeringNational Chung Cheng UniversityChiayiTaiwan 621

Personalised recommendations