Yet another application for Toupie: Verification of mutual exclusion algorithms

  • Marc-Michel Corsini
  • Alain Griffault
  • Antoine Rauzy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 698)


Toupie is a finite domain μ-calculus model checker that uses extended decision diagrams to represent relations and formulae. In recent papers, we have demonstrated that such a language can model and solve difficult problems, such as AI Puzzles, Abstract Interpretation of Logic Programs with very good running times. Hereafter we show how, in Toupie, one can handle transition systems and check properties of Mutual Exclusion Algorithms.


Constraints Languages Transition Systems Mutual Exclusion Algorithms ω-calculus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Park. Finitiness is Mu-ineffable. Theory of Computation, 3, 1974.Google Scholar
  2. 2.
    J.R. Burch, E.M. Clarke, and K.L. Mc Millan. Symbolic Model Checking: 1020 States and Beyond. In 5th Annual IEEE Symposium on Logic in Computer Science, pages 428–439. IEEE, 1990.Google Scholar
  3. 3.
    M-M. Corsini, K. Musumbu, and A. Rauzy. The μ-calculus over Finite Domains as an Abstract Semantics of Prolog. In M. Billaud, P. Castéran, M-M. Corsini, K. Musumbu, and A. Rauzy, editors, WSA '92 Workshop on Static Analysis (Bordeaux), volume 81–82 of Bigre, pages 51–59. Atelier Irisa, Sept. 23–25 1992.Google Scholar
  4. 4.
    M-M. Corsini and A. Rauzy. First Experiments with Toupie, 1993. submitted to ILPS'93.Google Scholar
  5. 5.
    R. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers, 35:677–691, 8 1986.Google Scholar
  6. 6.
    K. Brace, R. Rudell, and R. Bryant. Efficient Implementation of a BDD Package. In 27th ACM/IEEE Design Automation Conference. IEEE 0738, 1990.Google Scholar
  7. 7.
    G.L. Peterson. MYTHS about the Mutual Exclusion Problem. Information Processing Letters, 12(3):115–116, June 1981.CrossRefGoogle Scholar
  8. 8.
    A. Arnold. MEC: a System for Constructing and Analysing Transition Systems. In Workshop on Automatic Verification Methods for Finite State Systems, June 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Marc-Michel Corsini
    • 1
  • Alain Griffault
    • 1
  • Antoine Rauzy
    • 1
  1. 1.LaBRI - URA CNRS 1304 - Université Bordeaux ITalence Cedex

Personalised recommendations