On regular compatibility of semi-commutations

  • Edward Ochmański
  • Pierre-André Wacrenier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 700)


A semi-commutation θ′ is \(\mathcal{R}\mathcal{E}\mathcal{G}\)-compatible with a semi-commutation θ iff the θ′-closure of any regular θ-closed language remains regular. The paper presents a decidable criterion, characterizing couples of \(\mathcal{R}\mathcal{E}\mathcal{G}\)-compatible semi-commutations. The complexity of the problem is shown to be co-NP-complete.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.Clerbout/M.Latteux, On a generalization of partial commutation; 4th Hungarian Computer Science Conference's proceedings, pp. 15–24 (1985); Extended version: Semi-commutations; Information & Computation 73, pp.59–74 (1987)Google Scholar
  2. 2.
    M.Clerbout/M.Latteux/Y.Roos/W.Zielonka, Semi-commutations and rational expressions; 19th ICALP proceedings, LNCS 623, pp. 113–125 (1992)Google Scholar
  3. 3.
    V.Diekert/E.Ochmański/K.Reinhardt, On confluent semi-commutations — decidability and complexity results; 18th ICALP proceedings, LNCS 510, pp. 229–241 (1991) Extended version to appear in Information & Computation.Google Scholar
  4. 4.
    K. Hashiguchi, Recognizable closures and submonoids of free partially commutative monoids; Theoretical Computer Science 86, pp. 233–241 (1991)Google Scholar
  5. 5.
    D.V.Hung/E.Knuth, Semi-commutations and Petri Nets; Theoretical Computer Science 64, pp. 67–82 (1989)Google Scholar
  6. 6.
    E.Ochmański, Modelling concurrency with semi-commutations; 17th MFCS proceedings, LNCS 629, pp. 412–420 (1992)Google Scholar
  7. 7.
    Y.Roos/P.A.Wacrenier, Composition of two semi-commutations; 16th MFCS proceedings, LNCS 520, pp. 406–414 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Edward Ochmański
    • 1
  • Pierre-André Wacrenier
    • 2
  1. 1.Instytut Podstaw InformatykiPolska Akademia NaukWarszawa
  2. 2.CNRS URA 369, LIFL, Bât.M3Université de Lille 1Villeneuve d'Ascq

Personalised recommendations