Effectiveness of heuristics and simulated annealing for the scheduling of concurrent tasks — An empirical comparison

  • Christophe Coroyer
  • Zhen Liu
Paper Sessions Scheduling
Part of the Lecture Notes in Computer Science book series (LNCS, volume 694)


It is well-known that the scheduling of concurrent tasks with precedence constraints in parallel systems in order to minimize the makespan is NP-complete. We study both the average effectiveness and the average efficiency of 27 heuristics and 7 simulated annealing algorithms used for the minimization of makespan. It is shown, by a computational experiment, that the simulated annealing algorithms are very effective compared with the heuristics, provided these algorithms converge. It turns out that some heuristics are quite effective on the average, and that the heuristics, provided they are used together, have a qualitative behavior not much worse than that of the simulated annealing and are much more efficient.


Scheduling heuristics simulated annealing makespan empirical comparison parallel processing precedence constraints 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. L. Adam, K. M. Chandy, J. R. Dickson, “A Comparison of List Schedules for Parallel Processing Systems”, Comm. ACM, Vol. 17, pp. 685–690, 1974.CrossRefGoogle Scholar
  2. 2.
    E. G. Coffman Jr., R. L. Graham, “Optimal Scheduling for Two-Processor Systems”, Acta Informatica Vol. 1, pp. 200–213, 1972.Google Scholar
  3. 3.
    E. G. Coffman Jr., Z. Lin, “On the Optimal Stochastic Scheduling of Out-Forests”, Operations Research, Vol. 40, Supp. No. 1, pp. S67–S75, Janvier 1992.Google Scholar
  4. 4.
    C. Coroyer, Z. Liu, “Effectiveness of Heuristics and Simulated Annealing for the Scheduling of Concurrent Tasks — An Empirical Comparison,” Rapport de Recherche INRIA, No. 1379, Jan. 1991.Google Scholar
  5. 5.
    R. L. Graham, “Bounds on Multiprocessing Timing Anomalies”, SIAM J. Appl. Math., Vol. 17, No. 2, pp. 416–429, 1969.CrossRefGoogle Scholar
  6. 6.
    B. Hajek, “Cooling Schedules for Optimal Annealing”, Mathematics of Operations Research, Vol. 13, No. 2, may 1988.Google Scholar
  7. 7.
    B. Hajek, G. Sasaki, “Simulated Annealing — to cool or not”, Systems and Control Letters, Vol. 12, pp. 443–447, 1989.Google Scholar
  8. 8.
    Y. C. Hu, “Parallel Sequencing and Assembly Line Problems”, Operations Research, Vol. 9, 841–848, 1961.Google Scholar
  9. 9.
    S. Kirkpatrick, C. D. Gellat Jr., M. P. Vecchi, “Optimization by Simulated Annealing”, Science, Vol. 220, pp. 671–680, 1983.Google Scholar
  10. 10.
    P. J. M. van Laarhoven, E. H. L. Aarts, “Simulated Annealing: Theory and Applications”, D. Reidel Publishing Company, 1987.Google Scholar
  11. 11.
    J. K. Lenstra, A. H. G. Rinnooy Kan, “Complexity of Scheduling under Precedence Constraints”, Operations Research, Vol. 26, No. 1, pp. 22–35, 1978.Google Scholar
  12. 12.
    Z. Liu, “A Note on Graham's Bound.” Information Processing Letters, Vol. 36, pp. 1–5, 1990.Google Scholar
  13. 13.
    Z. Liu, J. Labetoulle, “A Heuristic Method for Loading and Scheduling Flexible Manufacturing Systems”, Proc. of the Intern. Conf. Control 88, London, IEE Conference Publication, No. 285, pp. 195–200, 1988.Google Scholar
  14. 14.
    C. V. Ramamoorthy, K. M. Chandy, M. J. Gonzalez Jr., “Optimal Scheduling Strategies in a Multiprocessor System”, IEEE Transactions on Computers, Vol. C-21, No. 2, pp. 137–146, 1972.Google Scholar
  15. 15.
    J. Ramanujam, F. Ercal, P. Sadayappan, “Task Allocation by Simulated Annealing”, Proceedings of the Third Intern. Conf. on Supercomputing, Vol 3, 471–480, 1988.Google Scholar
  16. 16.
    F. B. Talbot, J. H. Patterson, W. V. Gehrlein, “A Comparative Evaluation of Heuristic Line Balancing Techniques”, Management Science, Vol. 32, No. 4, pp. 430–454, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Christophe Coroyer
    • 1
  • Zhen Liu
    • 2
  1. 1.CNRSI3S-LISANValbonneFrance
  2. 2.Centre Sophia AntipolisINRIAValbonneFrance

Personalised recommendations