Advertisement

B(PN)2 — a basic Petri net programming notation

  • Eike Best
  • Richard P. Hopkins
Paper Sessions Concurrency: Semantics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 694)

Abstract

This paper presents the syntax of a concurrent programming notation which integrates a variety of process interaction techniques, its compositional Petri net semantics via the Box calculus, and an example of using the semantics for program verification.

Keywords

Concurrent Programming Notation Petri Nets Peterson's Mutual Exclusion Algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.Best, R.Devillers and J.G.Hall: The Petri Box Calculus: a New Causal Algebra with Multiway Communication. Advances in Petri Nets 1992 (ed. G.Rozenberg), 21–69, Springer-Verlag Lecture Notes in Computer Science Vol.609 (1992).Google Scholar
  2. [2]
    L.Cherkasova and V.Kotov: Descriptive and Analytical Process Algebras. Advances in Petri Nets 89 (ed. G.Rozenberg), Springer-Verlag Lecture Notes in Computer Science Vol. 424, 77–104 (1989).Google Scholar
  3. [3]
    P.Degano, R.De Nicola and U.Montanari: A Distributed Operational Semantics for CCS Based on C/E Systems. Acta Informatica 26 (1988).Google Scholar
  4. [4]
    J.Esparza: Past Model Checking Using Branching Processes. Hildesheimer Informatikbericht 14/92 (October 1992). An abridged version appears in Proc. of TAPSOFT-93 (1993).Google Scholar
  5. [5]
    F.Feldbrugge: Petri Net Tool Overview 1989. Advances in Petri Nets 1989 (ed. G.Rozenberg), Springer-Verlag Lecture Notes in Computer Science, Vol.424, 151–178 (1990).Google Scholar
  6. [6]
    U.Goltz: On Representing CCS Programs by Finite Petri Nets. Proc. MFCS-88, Springer-Verlag Lecture Notes in Computer Science Vol.324, 339–350 (1988).Google Scholar
  7. [7]
    U.Goltz, R.Kuiper and W.Penczek: Prepositional Temporal Logics and Equivalences. Proc. of CONCUR-92,Springer-Verlag Lecture Notes in Computer Science, 222–236 (1992).Google Scholar
  8. [8]
    J.G.Hall: Petri Boxes and General Recursion. In: DEMON Final Report, appears as GMD-Studie Nr.217 (1993).Google Scholar
  9. [9]
    J.G.Hall, R.P.Hopkins and O.Botti: A Basic-Net Algebra for Program Semantics and its Application to occam. In ‘Advances in Petri Nets 1992’ (ed. G.Rozenberg), 179–214 (1992).Google Scholar
  10. [10]
    E.C.R.Hehner: Predicative Programming Part I. Comm. of the ACM, Vol.27(2), 134–152 (February 1984).CrossRefGoogle Scholar
  11. [11]
    C.A.R.Hoare: Communicating Sequential Processes. CACM 21(8), 666–677 (1978).Google Scholar
  12. [12]
    R.P.Hopkins: The TMR and Concurrent Queue Case Studies. In: DEMON Final Report, appears as GMD-Studie Nr.217 (1993).Google Scholar
  13. [13]
    K.Jensen: Coloured Petri Nets. Springer-Verlag Lecture Notes in Computer Science Vol.254, 248–299 (1986).Google Scholar
  14. [14]
    R.Janicki and P.E.Lauer: Specification and Analysis of Concurrent Systems. The COSY Approach. Springer-Verlag, EATCS Monographs on Theoretical Computer Science Vol. 26 (1992).Google Scholar
  15. [15]
    D.May: occam. SIGPLAN Notices, Vol.18(4), 69–79 (April 1983).Google Scholar
  16. [16]
    R.Milner: Communication and Concurrency. Prentice Hall (1990).Google Scholar
  17. [17]
    T.Murata, B.Shenker and S.M.Shatz: Detection of ADA Static Deadlocks Using Petri Net Invariants. IEEE Transactions on Software Engineering, 15(3), 314–326 (1989).Google Scholar
  18. [18]
    E.R.Olderog: Nets, Terms and Formulae. Habilitation (1989). Cambridge Tracts in Theoretical Computer Science (1991).Google Scholar
  19. [19]
    G.Peterson: Myths about the Mutual Exclusion Problem. IPL Vol. 12/3, 115–116 (1981).Google Scholar
  20. [20]
    U.Pletat: Algebraic Specifications of Abstract Data Types and CCS: an Operational Junction. Proc. of: 6th IFIP International Workshop on Protocol Specification, Testing and Verification, Montreal (1986).Google Scholar
  21. [21]
    V.Pratt: Modeling Concurrent Systems with Partial Orders. Int. Journal of Parallel Programming, Vol. 15(1), 33–71 (1986).Google Scholar
  22. [22]
    W.Reisig: Petri Nets: an Introduction. EATCS Monographs on Theoretical Computer Science Vol.4, Springer Verlag (1988).Google Scholar
  23. [23]
    P.H.Starke: PAN — a Petri Net Analyser (1992). Described in [5] as part of PSI-tool.Google Scholar
  24. [24]
    D.Taubner: Finite Representation of CCS and TCSP Programs by Automata and Petri Nets. Springer-Verlag Lecture Notes in Computer Science Vol. 369 (1989).Google Scholar
  25. [25]
    G.Winskel: A New Definition of Morphism on Petri Nets. Proc. STACS-84, Springer-Verlag Lecture Notes in Computer Science Vol. 166, 150–150 (1984).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Eike Best
    • 1
  • Richard P. Hopkins
    • 2
  1. 1.Institut für InformatikUniversität HildesheimGermany
  2. 2.Department of Computing ScienceUniversity of Newcastle upon TyneUK

Personalised recommendations