Skip to main content

Realms: A foundation for spatial data types in database systems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 692))

Abstract

Spatial data types or algebras for database systems should (i) be fully general (which means, closed under set operations, hence e.g. a region value can be a set of polygons with holes), (ii) have formally defined semantics, (iii) be defined in terms of finite representations available in computers, (iv) offer facilities to enforce geometric consistency of related spatial objects, and (v) be independent of a particular DBMS data model, but cooperate with any. We offer such a definition in two papers. The central idea, introduced in this (first) paper, is to use realms as geometric domains underlying spatial data types. A realm as a general database concept is a finite, dynamic, user-defined structure underlying one or more system data types. A geometric realm defined here is a planar graph over a finite resolution grid. Problems of numerical robustness and topological correctness are solved below and within the realm layer so that spatial algebras defined above a realm enjoy very nice algebraic properties. Realms also interact with a DBMS to enforce geometric consistency on object creation or update.

This work was supported by the DFG (Deutsche Forschungsgemeinschaft) under grant Gu 293/1-1.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abiteboul, S., and C. Beeri, On the Power of Languages for the Manipulation of Complex Objects. Technical Report 846, INRIA (Paris), 1988.

    Google Scholar 

  2. Bentley, J.L., and T. Ottmann, Algorithms for Reporting and Counting Geometric Intersections. IEEE Trans. on Computers C-28 (1979), 643–647.

    Google Scholar 

  3. Edelsbrunner, H., and E.P. Mücke, Simulation of Simplicity. Proc. ACM Symposium on Computational Geometry (Urbana-Champaign, Illinois), 1988.

    Google Scholar 

  4. Egenhofer, M.J., A. Frank, and J.P. Jackson, A Topological Data Model for Spatial Databases. Proc. SSD 89 (Santa Barbara, California), 1989, 271–286.

    Google Scholar 

  5. Gargano, M., E. Nardelli, and M. Talamo, Abstract Data Types for the Logical Modeling of Complex Data. Information Systems 16, 5 (1991).

    Google Scholar 

  6. Greene, D., and F. Yao, Finite-Resolution Computational Geometry. Proc. 27th IEEE Symp. on Foundations of Computer Science, 1986, 143–152.

    Google Scholar 

  7. Guibas, L., D. Salesin, and J. Stolfi, Epsilon-geometry: Building Robust Algorithms from Imprecise Computations. Proc. SIAM Conf. on Geometric Design (Tempe, Arizona), 1989.

    Google Scholar 

  8. Guttman, A., R-Trees: A Dynamic Index Structure for Spatial Searching. Proc. ACM SIGMOD Conf. 1984, 47–57.

    Google Scholar 

  9. Güting, R.H., Geo-Relational Algebra: A Model and Query Language for Geometric Database Systems. Proc. of the Intl. Conf. on Extending Database Technology (Venice, Italy), 1988, 506–527.

    Google Scholar 

  10. Güting, R.H., Modeling Non-Standard Database Systems by Many-Sorted Algebras. Fachbereich Informatik, Universität Dortmund, Report 255, 1988.

    Google Scholar 

  11. Güting, R.H., Gral: An Extensible Relational Database System for Geometric Applications. Proc. of the 15th Intl. Conf. on Very Large Databases (Amsterdam, The Netherlands), 1989, 33–44.

    Google Scholar 

  12. Güting, R.H., and M. Schneider, Realm-Based Spatial Data Types: The ROSE Algebra. Fachbereich Informatik, FernUniversität Hagen, Report 141, 1993.

    Google Scholar 

  13. Henrich, A., H.-W. Six, and P. Widmayer, The LSD Tree: Spatial Access to Multidimensional Point-and Non-Point-Objects. Proc. of the 15th Intl. Conf. on Very Large Data Bases (Amsterdam, The Netherlands), 45–53.

    Google Scholar 

  14. Joseph, T., and A. Cardenas, PICQUERY: A High Level Query Language for Pictorial Database Management IEEE Trans. on Software Engineering 14 (1988), 630–638.

    Google Scholar 

  15. Lipeck, U., and K. Neumann, Modelling and Manipulating Objects in Geoscientific Databases. Proc. 5th Intl. Conf on the Entity-Relationship Approach (Dijon, France, 1986), 1987, 67–86.

    Google Scholar 

  16. Nagy, G., M. Mukherjee, and D.W. Embley, Making Do with Finite Numerical Precision in Spatial Data Structures. Proc. 4th Intl. Symp. on Spatial Data Handling (Zürich, Switzerland), 1990, 55–65.

    Google Scholar 

  17. Nievergelt, J., and F.P. Preparata, Plane-Sweep Algorithms for Intersecting Geometric Figures. Communications of the ACM 25 (1982), 739–747.

    Google Scholar 

  18. Orenstein, J., and F. Manola, PROBE Spatial Data Modeling and Query Processing in an Image Database Application. IEEE Trans. on Software Engineering 14 (1988), 611–629.

    Google Scholar 

  19. Ottmann, T., G. Thiemt, and C. Ullrich, Numerical Stability of Geometric Algorithms. Proc. 3rd ACM Symp. on Computational Geometry, 1987, 119–125.

    Google Scholar 

  20. Rossopoulos, N., C. Faloutsos, and T. Sellis, An Efficient Pictorial Database System for PSQL. IEEE Trans. on Software Engineering 14 (1988), 639–650.

    Google Scholar 

  21. Scholl, M., and A. Voisard, Thematic Map Modeling. Proc. SSD 89, (Santa Barbara, California), 1989, 167–190.

    Google Scholar 

  22. Svensson, P., and Z. Huang, Geo-SAL: A Query Language for Spatial Data Analysis. Proc. SSD 91 (Zürich, Switzerland), 1991, 119–140.

    Google Scholar 

  23. Voisard, A., Bases de données géographiques: du modèle de données à l'interface utilisateur. Ph.D. Thesis, University of Paris-Sud (Centre d'Orsay), 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David Abel Beng Chin Ooi

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Güting, R.H., Schneider, M. (1993). Realms: A foundation for spatial data types in database systems. In: Abel, D., Chin Ooi, B. (eds) Advances in Spatial Databases. SSD 1993. Lecture Notes in Computer Science, vol 692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56869-7_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-56869-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56869-8

  • Online ISBN: 978-3-540-47765-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics