Advertisement

Recognition of functional dependencies in data

  • Robert Zembowicz
  • Jan M. Zytkow
Learning and Adaptive Systems II
Part of the Lecture Notes in Computer Science book series (LNCS, volume 689)

Abstract

Discovery of regularities in data involves search in many spaces, for instance in the space of functional expressions. If data do not fit any solution in a particular space, much time could be saved if that space was not searched at all. A test which determines the existence of a solution in a particular space, if available, can prevent unneeded search. We discuss a functionality test, which distinguishes data satisfying the functional dependence definition. The test is general and computationally simple. It permits error in data, limited number of outliers, and background noise. We show, how our functionality test works in database exploration within the 49er system as a trigger for the computationally expensive search in the space of equations. Results of tests show the savings coming from application of the test. Finally, we discuss how the functionality test can be used to recognize multifunctions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.C. Falkenhainer & R.S. Michalski: Integrating quantitative and qualitative discovery: the ABACUS system. Machine Learning 1, pp367–422 (1986)Google Scholar
  2. 2.
    P. Hoschka & W. Klösgen: A Support System for Interpreting Statistical Data, in: Piatetsky-Shapiro G. & Frawley W. eds Knowledge Discovery in Databases, Menlo Park, Calif.: AAAI Press (1991)Google Scholar
  3. 3.
    W. Klösgen: Patterns for Knowledge Discovery in Databases in: Żytkow J. edProceedings of the ML-92 Workshop on Machine Discovery (MD-92), National Institute for Aviation Research, Wichita, Kansas, pp.1–10 (1992)Google Scholar
  4. 4.
    P. Langley, H.A. Simon, G.L. Bradshaw, & J.M. Żytkow: Scientific discovery: Computational explorations of the creative processes. Cambridge, MA: MIT Press (1987)Google Scholar
  5. 5.
    M. Moulet: ARC.2: Linear Regression In ABACUS, in: Żytkow J. ed Proceedings of the ML-92 Workshop on Machine Discovery (MD-92), National Institute for Aviation Research, Wichita, Kansas, pp.137–146 (1992)Google Scholar
  6. 6.
    B. Nordhausen & P. Langley: An Integrated Approach to Empirical Discovery. in: J. Shrager & P. Langley (eds.) Computational Models of Scientific Discovery and Theory Formation, pp. 97–128, Morgan Kaufmann Publishers, San Mateo, CA (1990)Google Scholar
  7. 7.
    G. Piatetsky-Shapiro & C. Matheus: Knowledge Discovery Workbench, in: G. Piatetsky-Shapiro ed. Proc. of AAAI-91 Workshop on Knowledge Discovery in Databases, pp. 11–24 (1991)Google Scholar
  8. 8.
    R. Zembowicz & J.M. Żytkow: Automated Discovery of Empirical Equations from Data, Proceedings of the ISMIS-91 Symposium, Springer-Verlag (1991)Google Scholar
  9. 9.
    R. Zembowicz & J.M. Źytkow: Discovery of Regularities in Databases, in Żytkow J. ed Proc. ML-92 Workshop on Machine Discovery. Aberdeen, U.K. pp. 18–27 (1992)Google Scholar
  10. 10.
    J. Żytkow & J. Baker: Interactive Mining of Regularities in Databases. In Knowledge Discovery in Databases, eds. G. Piatetsky-Shapiro and W. Frawley. Menlo Park, Calif.: AAAI Press (1991)Google Scholar
  11. 11.
    J.M. Żytkow: Combining many searches in the FAHRENHEIT discovery system, Proceedings of the Fourth International Workshop on Machine Learning. Irvine, CA: Morgan Kaufmann, 281–287 (1987).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Robert Zembowicz
    • 1
  • Jan M. Zytkow
    • 1
  1. 1.Department of Computer ScienceWichita State UniversityWichita

Personalised recommendations