Advertisement

Boolean reasoning for decision rules generation

  • Andrzej Skowron
Approximate Reasoning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 689)

Abstract

In the paper we investigate the generation problem of optimal decision rules with some certainty coefficients based on belief [7] and rough membership functions [6]. We show that the problems of optimal rules generation can be solved by boolean reasoning [2].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.K. Bhatnager, L.N. Kanal: Handling uncertain information: A review of numeric and non-numeric methods. In: L.N. Kanal, J.F. Lemmer (eds.): Uncertainty in Artificial Intelligence. Amsterdam: North-Holland 1986Google Scholar
  2. 2.
    F.M. Brown: Boolean reasoning. Dordrecht: Kluwer 1990Google Scholar
  3. 3.
    Y. Kodratoff, R. Michalski: Machine Learning: An Artificial Intelligence Approach, vol. 3. San Mateo: Morgan Kaufmann 1990Google Scholar
  4. 4.
    Z. Pawlak: Rough sets. International Journal of Information and Computer Science 11, 344–356 (1982)Google Scholar
  5. 5.
    Z. Pawlak: Rough sets: Theoretical Aspects of Reasoning about Data. Dordrecht: Kluwer 1991Google Scholar
  6. 6.
    Z. Pawlak, A. Skowron: Rough membership functions. to appear In: M. Federizzi, J. Kacprzyk and R.R. Yager (eds.): Advances in the Dempster-Shafer Theory of Evidence. New York: John Wiley and SonsGoogle Scholar
  7. 7.
    G. Shafer: Mathematical Theory of Evidence. Princeton: University Press 1976Google Scholar
  8. 8.
    G. Shafer, J. Pearl: Readings in Uncertain Reasoning. San Mateo: Morgan Kaufmann 1990Google Scholar
  9. 9.
    A. Skowron, J.W. Grzymala-Busse: From rough set theory to evidence theory. to appear In: M. Federizzi, J. Kacprzyk and R.R. Yager (eds.): Advances in the Dempster-Shafer Theory of Evidence. New York: John Wiley and SonsGoogle Scholar
  10. 10.
    A. Skowron, C. Rauszer: The discernibility matrices and functions in information systems. In: R. Slowinski (ed.): Decision Support by Experience — Applications of the Rough Sets Theory. Dordrecht: Kluwer 1992, pp.331–362Google Scholar
  11. 11.
    A. Skowron, J. Stepaniuk: Searching for classifiers. In: M. De Glas, D. Gabbay: Proc. of First World Conference on Foundations of Artificial Intelligence, Paris, July 1–5, 1991. Paris: Angkor 1991, pp. 447–460Google Scholar
  12. 12.
    W. Ziarko: Analysis of uncertain information in the framework of variable precision rough set model. In: International Workshop Rough Sets: State of the Art and Perspectives, Poznan-Kiekrz (Poland), September 2–4, 1992. Extended Abstracts. Poznan 1992, pp.74–77Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Andrzej Skowron
    • 1
  1. 1.Institute of MathematicsUniversity of WarsawWarsawPoland

Personalised recommendations