Local stochastic competition and vector quantization

  • M. Graña
  • A. D'Anjou
  • F. X. Albizuri
  • F. J. Torrealdea
  • M. C. Hernandez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 686)


Stochastic relaxation techniques and competitive neural networks have been applied to Vector Quantization (VQ). We provide a short review of the relevant approaches and define a Local Stochastic Competition rule, relating it to the Soft Competition algorithm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ahalt S.C., A.K. Krishnamurthy, P. Chen, D.E. Melton (1990) “Competitive Learning Algorithms for Vector Quantization” Neural Networks 3 pp. 277–290Google Scholar
  2. [2]
    Duda R.O., P.E. Hart (1973) “Pattern Gasification and Scene Analysis” WileyGoogle Scholar
  3. [3]
    Gray R.M. (1984) “Vectort Quantization” IEEE ASSP 1 pp. 4–29Google Scholar
  4. [4]
    Gersho A. (1982) “On the structure of vector quantizers” IEEE Trans. Inf. Th. 28(2) pp. 157–166Google Scholar
  5. [5]
    Johnson D.S., Aragon C.R., McGeoch L.A., Schevon C. (1989). “Optimization by simulated annealing: an experimental evaluation; part 1, graph partitioning”. Oper. Res. 37(6), pp. 865–892.Google Scholar
  6. [6]
    Kirpatrick S., Gelatt C.D. Jr., Vecchi M.P. (1983). “Optimization by simulated annealing”. Science 20, pp. 671–680.Google Scholar
  7. [7]
    Kohonen T. (1984) (1988 2nd ed.) “Self-Organization and associative memory” Springer VerlagGoogle Scholar
  8. [8]
    Laarhoven P.J.M., Aarts E.H.L. (1987). “Simulated annealing: Theory and Applications”. Kluwer, Dordrecht, Neth.Google Scholar
  9. [9]
    Linde Y., A. Buzo, R.M. Gray (1980) “An algorithm for vector quantizer design” IEEE TRans. Comm. 28 pp. 84–95Google Scholar
  10. [10]
    Nasrabadi NM, Y. Feng (1988) “Vector Quantization of images based upon the Kohonen Self-Organizing feature maps” IEEE Int. Conf. on Neural Net. San Diego pp.1101–1108Google Scholar
  11. [11]
    Naylor J., K.P. Li (1988) “Analysis of neural network algorithm for vector quantization of speech parameters” Proc. First Ann. INNS Meet. Pergamon Press p.310–315Google Scholar
  12. [12]
    K. Rose, E. Gurewitz, G.C. Fox “Vector Quantization by Deterministic Annealing” IEEE Trans. Inf. Th. 38(4) pp. 1249–1257Google Scholar
  13. [13]
    Yair E., K. Zeger, A. Gersho (1992) “Competitive Learning and Soft Competition for Vector Quantization” IEEE Trans. Sign. Proc. 40(2) pp. 294–308Google Scholar
  14. [14]
    Zeger K., J. Vaisey, A. Gersho (1992) “Globally Optimal Vector Quantizer design by stochastic relaxation” IEEE Trans. Sign. Proc. 40(2) pp. 310–322Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • M. Graña
    • 1
  • A. D'Anjou
    • 1
  • F. X. Albizuri
    • 1
  • F. J. Torrealdea
    • 1
  • M. C. Hernandez
    • 1
  1. 1.Dept. CCIAUniv. Pais Vasco/EHUSan SebastiánEspaña

Personalised recommendations