Towards more realistic self contained models of neurons: High-order, recurrence and local learning

  • J. Mira
  • A. E. Delgado
  • J. R. Alvarez
  • A. P. de Madrid
  • M. Santos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 686)


The anatomy and physiology of biological neurons is revisited looking at a minimum set of computational requirements to be included in new and more complex models of self-contained local computation ANN. Some of these functionalities are then integrated and the corresponding model is evaluated. Properties included are: (1) locality and autonomy in all the computations including the learning algorithms. (2) a layered architecture with high-order recurrent neurons, (3) self and external programming via input spaces and (4) fault tolerance after physical lesion, or even elimination of one or more neurons.

Given the case that the improvements included in this proposal are of some value, it is nonetheless clear to us that the more genuine properties of biological computation are still lost. If we were to look for implementation, we would say that a minimal model of a neuron should include at least the computational capacity of a microprocessor with self-programming and fault tolerance facilities as addenda.


Self-contained models recurrent neurons local learning input programming fault tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    McCULLOCH W.S. and PITTS (1943): “A logical calculus of the ideas immanent in nervous activity”. Bulletin of Mathematical Biophysics, Vol. 5, pp. 115–133. Chicago Univ. Press.Google Scholar
  2. [2]
    McCULLOCH W.S. (1965): “Embodiments of Mind”. The MIT Press. Mass.Google Scholar
  3. [3]
    KANDELL E.R. (1967): “Cellular Studies of Learning”. In: “The Neurosciences: A Study Program”. Ed. by G.C. Quarton, T. Melnechukand, F.O. Schmitt, pp. 666–689. Rockfeller University Press. New York.Google Scholar
  4. [4]
    KANDELL E.R. (1983): “From Metapsychology to Molecular Biology: Explorations into the Nature of Anxiety”. The American Journal of Psychiatry, 140:10. pp 1277–1293.Google Scholar
  5. [5]
    SCHMITT F.O. and WORDEN F.G. (1979): “The Neuroscience Fourth Study Program”. The MIT Press. Mass.Google Scholar
  6. [6]
    HEBB D.O. (1949): “The Organization of Behavior”. J. Wiley. N. York.Google Scholar
  7. [7]
    DE FELIPE J. et al (1990): “A Microcolumnar Structure of Monkey Cerebral Cortex Revealed by Inmunocitochemical Studies of Double Bouquet Cell Axons”. Neuroscience, vol 37, No 3, pp. 655–673.Google Scholar
  8. [8]
    DE FELIPE J. and FARIÑAS I. (1992): “The Pyramidal Neuron of the Cerebral Cortex: Morphological and Chemical Characteristics of Synaptic Inputs”. Progress in Neurobiology, vol 39 pp. 563–607.Google Scholar
  9. [9]
    KOHONEN T. (1988): “The ‘Neural’ Phonetic Typewriter”. Computer, Vol. 2, No. 3, pp. 11–22.Google Scholar
  10. [10]
    KOHONEN T. et al, eds. (1991): “Artificial Neural Networks”, Vol. 1 and 2. North-Holland.Google Scholar
  11. [11]
    PRIETO A. ed. (1991): “Artificial Neural Networks”. Lecture Notes in Computer Science, 540. Springer-Verlag.Google Scholar
  12. [12]
    HOPFIELD J.J. and TANK D.W. (1986): “Computing with neural circuits: a model”. Science, Vol. 233, pp. 625–633.Google Scholar
  13. [13]
    RUMELHART D.E. et al. (1986): “Learning internal representations by error propagation”. In D.E. Rumelhart and J.L. McClelland (Eds.): “Parallel Distributed Processing: Explorations in the Microstucture of Cognition”, Vol. 1: Foundations. MIT Press, Mass.Google Scholar
  14. [14]
    MARR D. (1982): “Vision”. W.H. Freeman and Company. New York.Google Scholar
  15. [15]
    CAJAL S.R. (1952): “Histologie du Systéme Nerveux de l'Homme et des Vertébrés”. Vol. 1 y 2. Maloine. París.Google Scholar
  16. [16]
    MOUNTCASTLE V.B. (1979): “An Organizing Principle for Cerebral Function: the Unit Module and the Distributed System”, in F.O. Schmitt and F.G. Worden (Eds.): The Neuroscience Fourth Study Program, pp. 21–42. The MIT Press, Cambridge. Mass.Google Scholar
  17. [17]
    BULLOCK et al. (1977): “Introduction to Nervous Systems”. W.H. Freeman and Company. San Francisco.Google Scholar
  18. [18]
    HUBEL D.H. and WIESEL T.N. (1962): “Receptive fields, binocular interaction and functional architecture in the cats visual cortex”. J. Physiol. 166, pp. 106–154. London.Google Scholar
  19. [19]
    BRAITENBERG V. (1977): “On the texture of brains: An introduction to neuroanatomy for the cybernetically minded”. Springer-Verlag. New York.Google Scholar
  20. [20]
    KOCH C. and POGGIO T. (1985): “Biophysics of Computation: Neurons, Synapsis and Membranes” in New Insights Into Synaptic Function”, Edelman, Gall and Cowan, eds. J. Wiley and Son.Google Scholar
  21. [21]
    LETTVIN J.Y. (1962): “Form-function Relations in Neurons”. Q.P.R. No 66, pp. 333. Research Lab. of Elect. MITGoogle Scholar
  22. [22]
    HARTLINE H.K. et al (1965): “Inhibitory Interactions in the Retina and its Significance in Vision”. In Nervous Inhibition. E. Florey ed. pp. 241–284. Pergamon. Oxford.Google Scholar
  23. [23]
    RATLIFF F. (1965): “Mach bands”. Holden Day, San Francisco.Google Scholar
  24. [24]
    LASHLEY K.S. (1950): “In search of the engram”. In: “Society for Experimental Biology”. Symposium No. 4: Physiological Mechanims in Animal Behavior. Cambridge Univ. Press.Google Scholar
  25. [25]
    LURIA A.R. (1974 a): “El cerebro en acción”. Ed. Fontaneila. Barcelona.Google Scholar
  26. [26]
    STERIADE, M. and LLINÁS, R.R. (1988): “The Functional States of the Thalamus and the Associated Neuronal Interplay”. Physiological Reviews, Vol. 68, nℴ. 3, July 1988. pp. 649–742.Google Scholar
  27. [27]
    RALL, W. (1977): “Core Conductor Theory and Cable Properties of Neurons”. Chapter, 3 of the Handbook of Physiology. The Nervous System I, pp. 39–97. R. Kandel ed.Google Scholar
  28. [28]
    PERKEL D.H. and BULLOCK T.H. (1968): “Neural Coding. A Report Based on an NRP Work Session”. Neurociences Research Program Bulletin, Vol. 6, No. 3. Brookline, Mass.Google Scholar
  29. [29]
    MIRA J. et al. (1983): “A theoretical proposal to embody co-operative decision in the nervous system”. International Conference on World Problems and Systems Learning, pp. 23–27. Detroit. Michigan.Google Scholar
  30. [30]
    MIRA J. and DELGADO A.E. (1991a): “Always Trying to Write an Equation for the Brain”. In Lecture Notes in Computer Science, 540. Artificial Neural Networks. A. Prieto ed. pp. 93–100. Springer-Verlag. Berlin.Google Scholar
  31. [31]
    MIRA J. and DELGADO A.E. (1991b): Linear and Algorithmic Formulation of Co-operative Computation in Neural Nets. In Lecture Notes in Computer Science, 585: Computer Aided Systems Theory. EUROCAST91. F. Pichler and R. Moreno Díaz Eds. pp. 2–20. Springer-Verlag. Berlin.Google Scholar
  32. [32]
    MORENO-DIAZ R. and RUBIO E. (1979): “A Theoretical Model for Layered Visual Processing”. Int. J. Bio-Med. Comp. 10, pp. 134–143.Google Scholar
  33. [33]
    FONSECA, J.S. da and McCULLOCH, W.S. (1967): “Synthesis and Linearization of Non-linear Feedback Shift Registers — Basis of a Model of Memory” Q.P.R. nℴ. 86. MIT, pp. 355.Google Scholar
  34. [34]
    FUKUNAGA K. (1964): “A Theory of Non-linear Autonomous Sequential Nets Using Z-Transformes”. IEEE Trans., 1964, vol. EC-13, pp. 310–313.Google Scholar
  35. [35]
    RÖCKMANN D. and MORAGA, C. (1991): “Using Quadratic Perceplrons to Reduce Interconnection density in multilayer neural networks”. In Lecture Notes in Computater Science, nℴ 540. Artificial Neural Networks. A. Prieto, ed. pp. 86–91. Springer-Verlag. Berlin, 1991.Google Scholar
  36. [36]
    MIRA J. (1992): “Computación Neuronal”. UNED, Madrid.Google Scholar
  37. [37]
    SEGEV I. (1992): “Single Neurone Models: Oversimple, Complex and Reduced”. Trend in Neuroscience. Vol. 15, nℴ 11 pp. 414–421.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • J. Mira
    • 1
  • A. E. Delgado
    • 1
  • J. R. Alvarez
    • 1
  • A. P. de Madrid
    • 1
  • M. Santos
    • 1
  1. 1.Dpto. de Informática y Automática Facultad de CienciasUNEDMadridSpain

Personalised recommendations