Skip to main content

Theory of phase transition in polymer gels

  • Chapter
  • First Online:
Responsive Gels: Volume Transitions I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 109))

Abstract

A variety of unique phenomena are encountered in gels which arise from coupling between phase transition and elasticity. On the basis of a Ginzburg-Landau theory with a tensor order parameter, macroscopic and bulk instabilities, phase transitions in anisotropically deformed gels, and scattering amplitudes in various situations are considered. Basic dynamic equations of network and solvent are presented to analyze swelling processes, critical dynamics, and dynamics in anisotropic gels. A surface mode of uniaxial gels is also described which becomes unstable when the degree of anisotropy is increased eventually resulting in periodic folding of the surface. We propose a theory of dynamic light scattering which takes account of the frequency-dependence of the elastic moduli originating from network relaxation. As a result, the time correlation function of the density fluctuations has a slowly decaying component and the effect is enhanced near the spinodal point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

B:

dimensionless parameter representing the magnitude of the logarithmic term in F el

c:

parameter characterizing uniaxial extension

C:

coefficient in F inh

CV :

specific heat of gel at constant volume

C :

specific heat of gel at constant osmotic pressure

Dh :

diffusion constant given by Kawasaki's formula

Eij :

tensor defined by Eq. (4.38) for homogeneous gel

F:

free energy change after mixing of solvent and an initially, unstrained polymer network

Fel :

free energy due to elastic deformations

Finh :

free energy due to large scale inhomogeneities

Fion :

free energy due to ions

Fmix :

mixing free energy

ℱ=(ℱ1, ℱ2, ℱ3):

force density −∇·∏

g:

dimensionless free energy defined by Eq. (2.27)

hk :

Fourier component of height fluctuation of gel surface

J(\(\hat q\)):

dimensionless parameter dependent on \(\hat q\) defined by Eq. (4.43)

kB :

Boltzmann constant

K:

bulk modulus

p:

degree of inhomogeneity in the crosslink density

p 0 :

pressure of solvent outside gel

\(\hat q\) :

direction of wave vector q

S(q):

structure factor

S(q, t):

time correlation function of density fluctuations

T:

absolute temperature

Ts :

spinodal temperature

u=(u1, u2, u3):

displacement vector Xx around a homogeneous state

v:

inverse of φ

v 1 :

volume of one solvent molecule

V:

total volume of gel

V 0 :

total volume of gel in the relaxed state

v:

average velocity

v f :

solvent velocity

v g :

network velocity

x=(x1, x2, x3):

Cartesian coordinates of affinely deformed, homogeneous gel

x0=(x 01 , x 02 , x 03 ):

Cartesian coordinates in the relaxed state

X=(X1, X2, X3):

Cartesian coordinates of deformed gel

α:

elongation ratio of isotropic gel

β 0 :

dimensionless parameter defined by Eq. (2.30)

γi :

dimensionless parameter defined by Eq. (2.29)

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\delta }\) :

parameter characterizing uniaxial extension and being equal to c −3/2

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\delta } _c\) :

critical value of \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\delta }\) being dependent of ε

ε:

K/μ+1/3 in isotropic gel and (K+μ/3)/μc2 in uniaxial gel

ζ:

polymer-solvent friction constant

ηs :

solvent viscosity

μ:

shear modulus

μs :

chemical potential of solvent inside gel

μ 0s :

chemical potential of solvent outside gel

ν 0 :

crosslink number density in the relaxed state

νi :

counter ion density in the relaxed state

νs :

crosslink density in deformed homogeneous gel

ξth :

thermal correlation length

∏:

osmotic pressure

ij :

stress tensor due to polymer

ρf :

solvent mass density

ρg :

polymer mass density

σ:

surface tension of gel-solvent interface

φ:

volume fraction of polymer

φ 0 :

volume fraction of polymer in the relaxed state

φc :

volume fraction at criticality

χ:

polymer-solvent interaction parameter

ω 0 :

high crossover frequency below which the Biot mass coupling is negligible

ωc :

low crossover frequency of transverse sounds in gel

9 References

  1. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca; Flory PJ (1976) Proc Roy Soc Lond A351: 351

    Google Scholar 

  2. de Gennes PG (1978) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  3. Dušek K, Patterson D (1968) J Polym Sci Part A-2, 6: 1209

    Google Scholar 

  4. Tanaka T, Ishiwata S, Ishionoto C (1977) Phys Rev Lett 38: 771

    Google Scholar 

  5. Tanaka T, Hocker LO, Benedik GB (1973) J Chem Phys 59: 5151

    Google Scholar 

  6. Tanaka T (1978) Phys Rev Lett 40: 820; Tanaka T, Filmore D, Sun ST, Nishio I, Swislow G, Shah A (1980) Phys Rev Lett 45: 1636

    Google Scholar 

  7. Ilavsky M (1982) Macromolecules 15: 782

    Google Scholar 

  8. Tanaka T, Sun ST, Hirokawa Y, Katayama S, Kucera J, Hirose Y, Amiya T (1987) Nature 325: 796

    Google Scholar 

  9. Tanaka T (1988) In: Nagasawa M (ed) Molecular conformation and dynamics of macromolecules in condensed systems. Elsevier, New York

    Google Scholar 

  10. Matuo ES, Tanaka T (1988) J Chem Phys 89: 1695

    Google Scholar 

  11. Tanaka T (1986) Physica A140: 261. This is a short review of his experiments.

    Google Scholar 

  12. Onuki A (1987) In: Komura S, Furukawa H (eds) Dynamic of ordering processes in condensed matter. Plenum, New York, p 71

    Google Scholar 

  13. Hirotsu S, Kaneki A (1987) In: Komura S, Furukawa H (eds) Dynamics of ordering processes in condensed matter. Plenum, New York, p 481; Hirotsu S (1992) article in this volume

    Google Scholar 

  14. Bansil R, Carvalho B, Lal J (1989) In: Stocks M, Gonis A (eds) Alloy phase stability, Kluwer, New York, p 639

    Google Scholar 

  15. Sekimoto K, Suematsu N, Kawasaki K (1989) Phys Rev A39: 4912; Sekimoto K, Kawasaki K (1988) In: Tanaka F, Doi M, Ohta T (eds) Space-time organization in macromolecular fluids. Springer, Berlin Heidelberg New York, p 105

    Google Scholar 

  16. Onuki A, Nishimori H (1991) Phys Rev B43: 13649; Nishimori H, Onuki A (1992) Physics Letters A162: 323

    Google Scholar 

  17. Sekimoto K, Kawasaki K (1989) Physica A154: 384

    Google Scholar 

  18. Onuki A (1988) Phys Rev A38: 2192

    Google Scholar 

  19. Onuki A (1988) J Phys Soc Jpn 57: 699

    Google Scholar 

  20. Onuki A (1989) Phys Rev A39: 5932

    Google Scholar 

  21. Onuki A (1988) In: Tanaka F, Doi M, Ohta T (eds) Space-time organization in macromolecular fluids. Springer, Berlin Heidelberg New York, p 94; Onuki A (1989) In: Kawasaki K, Suzuki M, Onuki A (eds) Formation, dynamics and statistics of patterns. World Scientific, Singapore, p 321

    Google Scholar 

  22. Hirotsu S (1987) J Phys Soc Jpn 56: 233

    Google Scholar 

  23. Erman B, Flory PJ (1986) Macromolecules 19: 2342

    Google Scholar 

  24. Mark JE, Erman B (1988) Rubberlike elasticity: A molecular primer. John Wiley, New York

    Google Scholar 

  25. Dušek K, Prins W (1969) Adv Polym Sci 6: 1

    Google Scholar 

  26. Binder K, Frisch HL (1984) J Chem Phys 81: 2126 and references quoted therein

    Google Scholar 

  27. Petrovič ZS, MacKnight WJ, Koningsveld R, Dušek K (1987) Macromolecules 20: 1088

    Google Scholar 

  28. Bauer BJ, Briber RM, Han CC (1989) Macromolecules 22: 940

    Google Scholar 

  29. Briber RM, Bauer BJ (1991) Macromolecules 24: 1899. By small-angle neutron scattering from blends of cross-linked and liner polystyrene they found that the intensity increased as the cross-link density was increased. This finding apparently contradicts our theoretical expression (4.11) below. See Sect. 4-4 for a comment on this point

    Google Scholar 

  30. Hirotsu S, Hirokawa Y, Tanaka T (1987) J Chem Phys 87: 1392; Hirotsu S (1987) J Chem Phys 88: 427

    Google Scholar 

  31. Hirotsu S (1992) Macromolecules 25: 4445

    Google Scholar 

  32. Kubo R (1948) J Phys Soc Jpn 3: 312

    Google Scholar 

  33. Rivlin RS (1956) In: Eirich F (ed) Rheology. Academic, vol 1

    Google Scholar 

  34. Kawasaki K (1970) Ann Phys 61: 1

    Google Scholar 

  35. Hohenberg PC, Halperin BI (1976) Rev Mod Phys 49: 435

    Google Scholar 

  36. Landau LD, Lifshitz EM (1973) Theory of elasticity. Pergamon, New York

    Google Scholar 

  37. Hirotsu S (1991) J Chem Phys 94: 3949

    Google Scholar 

  38. Onuki A (1989) Phys Rev B39: 12308

    Google Scholar 

  39. Courtens E, Gammon RW, Alexandar S (1979) Phys Rev Lett 43: 1026

    Google Scholar 

  40. Courtens E, Gammon RW (1981) Phys Rev B24: 3890

    Google Scholar 

  41. Cowley RA (1976) Phys Rev B13: 4877

    Google Scholar 

  42. Wagner H, Horner H (1974) Adv Phys 23: 587

    Google Scholar 

  43. Zabel H, Peisl H (1979) Phys Rev Lett 42: 511

    Google Scholar 

  44. Li Y, Tanaka T (1989) J Chem Phys 90: 561

    Google Scholar 

  45. Li Y (1989) Structure and critical behavior of gels. Thesis, Massachusetts Institute of Technology, Boston

    Google Scholar 

  46. Tanaka T, Filmore DJ (1979) J Chem Phys 70: 1214

    Google Scholar 

  47. Peters A, Candau SJ (1986) Macromolecules 19: 1952

    Google Scholar 

  48. Peters A, Candau SJ (1988) Macromolecules 21: 2278

    Google Scholar 

  49. Li Y, Tanaka T (1989) In: Onuki A, Kawasaki K (eds) Dynamics and patterns in complex fluids. Springer, Berlin Heidelberg New York, p 44

    Google Scholar 

  50. Hecht AM, Geissler E (1984) J de Physique 45: 309

    Google Scholar 

  51. Tanaka T, Sato E, Hirokawa Y, Hirotsu S, Peetermans J (1985) Phys. Rev. Lett. 55: 2455

    Google Scholar 

  52. Zwanzig R (1988) J Chem Phys 88: 5831

    Google Scholar 

  53. Onuki A (1992) J de Physique II 2: 45. Here the parameter B in (3.6) is set equal to 1, but it is imprecisely ascribed to Flory (Ref 1)

    Google Scholar 

  54. Ahalony A (1973) Phys Rev B8: 3363

    Google Scholar 

  55. Larkin AL, Khmelnitskii (1969) Sov Phys JETP 29: 1123

    Google Scholar 

  56. Takebe, Nawa K, Suehiro S, Hashimoto T (1989) J Chem Phys 91: 4350

    Google Scholar 

  57. Tien JK, Copley SM (1971) Metall Trans 2: 215

    Google Scholar 

  58. Miyazaki T, Nakamura K, Mori H (1979) J Materi Sci 14: 1827

    Google Scholar 

  59. MacKay RA, Ebert LJ (1985) Metall Trans A16: 1969

    Google Scholar 

  60. Onuki A (1989) J Phys Soc Jpn 58: 3065, 3069

    Google Scholar 

  61. Nishimori H, Onuki A (1990) Phys Rev B42: 980

    Google Scholar 

  62. Mendes E Jr, Lindner P, Buzier M, Boue F, Bastide J (1991) Phys Rev Lett 66: 1595

    Google Scholar 

  63. Bastide J, Leibler L (1988) Macromolecules 21: 2647

    Google Scholar 

  64. Bastide J, Leibler L, Prost J (1990) Macromolecules 23: 1821

    Google Scholar 

  65. Rabin Y, Bruinsma R (1992) Europhys Lett 20:79. In their scheme the field c, which is coupled to ∇·u via Eq. (4.53), is arbitrary. They assumed that c may be regarded as the deviation δφ of the polymer volume fraction itself. Then δφ and ∇·u are “weakly coupled”, whereas they are identical in our scheme. Thus a butterfly pattern appears in the form of Eq. (4.56) in their scheme even without heterogeneities

    Google Scholar 

  66. Maher JV, Goldburg WI, Pohl DW, Lanz M (1984) Phys Rev Lett 53: 60; Goh MC, Goldburg WI, Knobler CM (1987) Phys Rev Lett 58: 1008; Goldburg WI (1987) In: Safran SA, Clark NA (eds) Physics of complex and supermolecular fluids. John Wiley, New York, p 475

    Google Scholar 

  67. Frisken BJ, Cannell DS (1992) Phys Rev Lett 69: 632

    Google Scholar 

  68. Cahn JW (1961) Acta Metall 9: 795

    Google Scholar 

  69. Onuki A (1988) J Phys Soc Jpn 57: 1868

    Google Scholar 

  70. Hirotsu S, Onuki A (1989) J Phys Soc Jpn 58: 1508

    Google Scholar 

  71. Tanaka T, Nishio I, Sun ST, Nishio SU (1982) Science 218: 467

    Google Scholar 

  72. Marqusee JA, Deutch JM (1981) J Chem Phys 75: 5239

    Google Scholar 

  73. Johnson DL (1982) J Chem Phys 77: 1531. In this theory the porosity (= the fluid volume fraction) is denoted by φ, whereas we use φ for the network volume fraction

    Google Scholar 

  74. Biot MA (1956) J Acoust Soc Am 28: 168, 179

    Google Scholar 

  75. Biot MA, Willis DG (1957) J Appl Mech 24: 594

    Google Scholar 

  76. Doi M, Onuki A (1992) J de Physique II 2: 1631

    Google Scholar 

  77. Landel RF, Ferry JD (1955) J Phys Chem 26: 359

    Google Scholar 

  78. Ferry JD (1961) Viscoelastic properties of polymers. John Wiley, New York

    Google Scholar 

  79. Winter HH, Chambon F (1986) J Rheol 30: 367; Chambon F, Winter HH (1987) J Rheol 31: 683; Adolf D, Martin JE (1991) Macromolecules 24: 6721 and references quoted therein

    Google Scholar 

  80. Martin JE, Wilcoxon JP (1988) Phys Rev Lett 61: 373

    Google Scholar 

  81. Adam M, Delsanti M, Munch JP, Durand D (1988) Phys Rev Lett 61: 706

    Google Scholar 

  82. Bisschops J (1954) J Poly Sci 12: 583

    Google Scholar 

  83. Bacri JC, Rajaonarison R (1979) J de Physique Letters 40: L-5

    Google Scholar 

  84. Tanaka T (1978) Phys Rev A17: 763

    Google Scholar 

  85. Candau S, Munch JP, Hild G (1980) J de Physique 41: 1031

    Google Scholar 

  86. Tokita M, Tanaka T (1991) Science 253: 1121

    Google Scholar 

  87. Tanaka H, Takasu A, Hayashi T, Nishi T (1992) Phys Rev Lett 68: 2794

    Google Scholar 

  88. Sekimoto K, Kawasaki K (1987) J Phys Soc Jpn 56: 2997

    Google Scholar 

  89. Onuki A (1988) J Phys Soc Jpn 57: 703

    Google Scholar 

  90. Sekimoto K, Kawasaki K (1988) J Phys Soc Jpn 57: 2594; Hwa T, Kardar M (1988) Phys Rev Lett 61: 106

    Google Scholar 

  91. Onuki A (1992) J de Physique II 2: 1505

    Google Scholar 

  92. Onuki A, Harden J (unpublished)

    Google Scholar 

  93. In Ref 20, the gradient term in the free energy was supposed to be the origin of the higher order term in k. But the surface tension effect is more dominant at small k

    Google Scholar 

  94. Grinfeld MA (1986) Sov Phys Dokl 31: 831

    Google Scholar 

  95. Nozières P (1992) In: Godrèche C (ed) Solids far from equilibrium. Cambridge University Press, Cambridge, p 1

    Google Scholar 

  96. Bowley RM, Nozières P (1992) J de Physique I 2: 433

    Google Scholar 

  97. Rička J, Tanaka T (1984) Macromolecules 17: 2916

    Google Scholar 

  98. Doi M, Matsumoto M, Hirose Y (1992) Macromolecules 25: 5504

    Google Scholar 

  99. de Gennes PG (1979) J de Physique Lett 40: L-69

    Google Scholar 

  100. Bettachy A, Derouiche A, Benhamou, Daoud M (1991) J Physique I 1: 153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Dušek

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Onuki, A. (1993). Theory of phase transition in polymer gels. In: Dušek, K. (eds) Responsive Gels: Volume Transitions I. Advances in Polymer Science, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56791-7_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-56791-7_2

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56791-2

  • Online ISBN: 978-3-540-47737-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics