Theorem proving by combinatorial optimization

  • Hachemi Bennaceur
  • Gérard Plateau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 677)


The inference problem in propositional logic realizes a strong connection between Artificial Intelligence and Operational Research. It is now well-known that this problem can be formulated as a constraint satisfaction problem (CSP), whose system has a generalized covering type (we recall that a CSP consists in proving the emptiness of a domain defined by a set of diophantinc constraints, or the existence of a solution). We propose a new method -denoted by FAST (Fast Algorithm for the constraint Satisfaction Test problems)- which allows an efficient solution of the CSP instances for logical inference. Computational results are reported for 3-SAT, 4-SAT and system expert type instances.

Key Words

Constraint Satisfaction Problem Logical Inference Integer Programming Branch and Cut Automatic Theorem Proving Combinatorial Problem Design of Algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Bennaceur, Le problème de satisfaction de contraintes synthèse et méthode exacte de résolution, Thèse de Doctorat, Université Paris-Nord, France, (1989)Google Scholar
  2. [2]
    H. Bennaceur and G. Plateau, Sur le problème de satisfaction de contraintes, Research report LIPN 89-6, Université Paris-Nord, France (1989)Google Scholar
  3. [3]
    H. Bennaceur and G. Plateau, Le problème de satisfaction de contraintes: modèles des applications informatiques et méthode de résolution exacte, ResearchReport LIPN 90-4, Université Paris-Nord, France (1990)Google Scholar
  4. [4]
    C. E. Blair, R. G. Jeroslow and J. K. Lowe, Some results and experiments in programming techniques for proposilional logic, Computers and Operations Research (1988)Google Scholar
  5. [5]
    M. Davis and H. Putnam, A computing procedure for quantification theory, Journal of the ACM 7 (1960) 201–215Google Scholar
  6. [6]
    M. Condran, Intoduction aux systèmes experts, Ed. Eyrolles (1984)Google Scholar
  7. [7]
    J. N. Hooker and C. Fcdjki, Branch-and-cut solution of inference problems in propositional logic, Research report Carncgic-Mellon University Pittsurgh, Pennsylvania 15213 (1987)Google Scholar
  8. [8]
    J. N. Hooker, A quantitative approach to logical inference. Decision Support Systems 4 (1988) 45–69.Google Scholar
  9. [9]
    J. N. Hooker, Resolution vs. cutting plane solution of inference problems: some computational experience, Research report Carnegie-Mellon University Pittsurgh, Pennsylvania 15213 (1988)Google Scholar
  10. [10]
    R. G. Jeroslow and J. Wang, Solving propositional satisfiability problems, Research report Georgia Institute of Technology, Atlanta, GA (1987)Google Scholar
  11. [11]
    G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial optimisation, Willey-Interscience (1988)Google Scholar
  12. [12]
    N.J. Nilsson, Principles of Artificial Intelligence, Tiogo, Palo Alto, CA, 1980.Google Scholar
  13. [13]
    P. W. Purdom and C. A. Brown, Polynomial average-time satisfiability problems, India University Computer Science, Technical Report 118 (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Hachemi Bennaceur
    • 1
  • Gérard Plateau
    • 1
  1. 1.Institut Galilée Laboratoire d'Informatique de Paris-NordUniversité Paris-NordVilletaneuseFrance

Personalised recommendations