Deterministic systems of sequential processes: A class of structured Petri nets

  • Younes Souissi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 674)


In this paper, we define deterministic systems of sequential processes (DSSP), a class of Petri nets which generalizes the one introduced by Wolfgang Reisig in 1979. In studying this class of Petri nets, we have two aims. Our first aim is to give efficient and formal methods for the validation of a class of systems of sequential processes cooperating by message passing and resource sharing. Our second aim is to show that the modular structure of DSSPs allows us to fully use compositions of nets in the specification and the validation steps of the parallel applications that we describe through DSSPs. Indeed, we give several rules for building, in a bottom-up and modular way, a live DSSP. We also give for DSSPs an inexpensive method of liveness validation. Finally, we show that the liveness of a DSSP is monotonie, and that the minimal resources configurations ensuring the liveness are computable. This work is a contribution to the approach which involves developing classes of structured nets in order to specify and validate systems in a modular way via compositions and refinements.


Deterministic system of sequential processes liveness boundedness monotonicity modularity composition properties preservation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Barkaoui...89]
    K. Barkaoui and B. Lemaire: An effective characterization of minimal deadlocks and traps in Petri nets based on graph theory, Proc. of the Xth Int. Conf. on Application and Theory of Petri Nets, Bonn, 1989.Google Scholar
  2. [Berge 83]
    C. Berge: Graphes, Gauthiers-villars, Paris 1983.Google Scholar
  3. [Berthelot...83]
    G. Berthelot, W. Reisig, and G. Memmi: A control structure for sequential processes synchronized by buffers, Proc. of the 4th European Work. on App. and Th. of Petri nets, Toulouse, 1983.Google Scholar
  4. [Berthelot 85]
    G. Berthelot: Transformations and decompositions of nets, Advances in Petri Nets, LNCS 254, pp 359–376, 1986.Google Scholar
  5. [Beldiceanu 88]
    N.H. Beldiceanu: Language de règles et moteur d'inférence basé sur des contraintes et des actions. Application aux réseaux de Petri, Doctoral report, Paris VI, January 1988.Google Scholar
  6. [BRAMS...83]
    G.W. Brams: Réseaux de Petri: théorie et pratique, Masson, Paris, 1983.Google Scholar
  7. [Commoner 72]
    F. Commoner: Deadlock in Petri nets, Applied Data Research Inc. Wakefiels Mass. CA 7206-2311, 1972.Google Scholar
  8. [Hack 72]
    M. Hack: Analysis of production schemata by Petri nets, M.S. thesis, D.E.E. M.I.T. Cambridge Mass. Project MAC-TR 94, 1972.Google Scholar
  9. [Hack 73]
    M. Hack: Extended state-machine allocatable nets, an extension of free-choice nets, M.I.T Cambridge Mass. Project Mac, CSG-Memo 78-1, 1973.Google Scholar
  10. [Kosaruju 82]
    S.R. Kosaraju: Decidability of reachability in vector addition systems, in Proc. 14th Ann ACM Symp. on Theo. of Comp. 1982.Google Scholar
  11. [Lambert 86]
    J.L. Lambert: Consequences of the decidablity of the reachability problem for Petri nets, Université Paris Sud. Rapport de recherche LRI 313,1986.Google Scholar
  12. [Lautenbach...79]
    K. Lautenbach and P.S. Thiagarajan: Analysis of resource allocation problem using Petri nets, 1st Euro. Conference on Parallel and Distributed Processing, J.C. Syre (Ed.) Cepadues edition, 1979Google Scholar
  13. [lien 76]
    Y.E. Lien: Termination properties of generalized Petri nets, SIAM J. Comput. v. 5, n∘ 2,pp 251–265, Jun 1976.Google Scholar
  14. [Memmi 83]
    G. Memmi: Methodes d'analyse des réseaux de Petri, réseaux à files et application aux systèmes temps réels, thèse d'état, Paris VI, 1983.Google Scholar
  15. [Mayr 84]
    W. Mayr: An algorithm for the general Petri net reachability problem, in SIAM J. Comp. vol 13 (3), August 1984.Google Scholar
  16. [Peterson 81]
    J.L Peterson: Petri net theory and the modeling of systems, Prentice Hall, 1981.Google Scholar
  17. [Reisig 79]
    W. Reisig: On a Class of co-operating sequential processors, 1st European conference on parallel and distributed processing, Toulouse, February 1979.Google Scholar
  18. [Reisig 82]
    W. Reisig: Deterministic buffer synchronization of sequential processes, Acta Informatica 18, 1982.Google Scholar
  19. [Souissi...88]
    Y. Souissi and N. Beldiceanu: Deterministic systems of sequential processes: theory and tools, Concurrency 88, LNCS 335, pp 380–400, Springer-Verlag, 1988.Google Scholar
  20. [Souissi...89]
    Y. Souissi and G. Memmi: Compositions of nets via a communication medium, Advances in Petri nets '90, G. Rozenberg (Ed.) 1990.Google Scholar
  21. [Souissi 90]
    Y. Souissi: Préservation de propriétés par composition de réseaux de Petri, extension aux réseaux à files et application aux protocoles de communication, thèse de l'Université Paris VI, February 1990.Google Scholar
  22. [Souissi 92]
    Y. Souissi: Deterministic systems of sequential processes: a class of structured Petri nets, Internal INT report, to appear.Google Scholar
  23. [Valk...85]
    R.Valk and M. Jantzen: The residue of vectors sets with application to decidability problems in Petri nets, Acta Informatica 21: 643–674, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Younes Souissi
    • 1
  1. 1.Institut National des TélécommunicationsEvry cedexFrance

Personalised recommendations